Polaritons em materiais magn?ticos nanoestruturados

Made available in DSpace on 2014-12-17T15:15:05Z (GMT). No. of bitstreams: 1 CarlosAAA.pdf: 386122 bytes, checksum: 5912e9682005147cb0db6bc16a139bab (MD5) Previous issue date: 2007-06-15 === In this work we present a theoretical study about the properties of magnetic polaritons in superlattices ar...

Full description

Bibliographic Details
Main Author: Ara?jo, Carlos Alexandre Amaral
Other Authors: CPF:05011124487
Format: Others
Language:Portuguese
Published: Universidade Federal do Rio Grande do Norte 2014
Subjects:
Online Access:http://repositorio.ufrn.br:8080/jspui/handle/123456789/16662
Description
Summary:Made available in DSpace on 2014-12-17T15:15:05Z (GMT). No. of bitstreams: 1 CarlosAAA.pdf: 386122 bytes, checksum: 5912e9682005147cb0db6bc16a139bab (MD5) Previous issue date: 2007-06-15 === In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fash?ons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2 === Neste trabalho apresentamos um estudo te?rico sobre as propriedades dos polaritons magn?ticos em super-redes organizadas em padr?es peri?dico e quasiperi?dico. Na super-rede peri?dica, objetivando descrever o comportamento destes modos, tanto no volume quanto na superf?cie, foi utilizada a teoria do meio efetivo, que facilita enormemente a ?lgebra envolvida. Para a superrede quasi-peri?dica usamos um conveniente modelo te?rico baseado no trata mento da matriz-tranfer?ncia, para derivar a rela??o de dispers?o, utilizando as equa??es de Maxwell (incluindo efeitos de retardamento). Aqui, encontramos um espectro fractal caracterizado por uma lei de pot?ncia para a distribui??o de bandas de energia. A localiza??o e o comportamento de escala da estrutura quasi-peri?dica s?o estudadas numa geometria onde o vetor de onda e o campo aplicado est?o no mesmo plano (geometria de Voigt). Resultados num?ricos s?o apresentados para o ferromagneto Fe e para os metamagnetos FeBr2 e FeCl2 ===