Summary: | Made available in DSpace on 2014-12-17T15:15:03Z (GMT). No. of bitstreams: 1
PedroCAJ.pdf: 576377 bytes, checksum: e79b57752ae56a719ecf0f8d4ae0ea72 (MD5)
Previous issue date: 2006-11-03 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior === We investigate several diffusion equations which extend the usual one by considering
the presence of nonlinear terms or a memory effect on the diffusive term. We also
considered a spatial time dependent diffusion coefficient. For these equations we have
obtained a new classes of solutions and studied the connection of them with the anomalous
diffusion process. We start by considering a nonlinear diffusion equation with a spatial
time dependent diffusion coefficient. The solutions obtained for this case generalize the
usual one and can be expressed in terms of the q-exponential and q-logarithm functions
present in the generalized thermostatistics context (Tsallis formalism). After, a nonlinear
external force is considered. For this case the solutions can be also expressed in terms
of the q-exponential and q-logarithm functions. However, by a suitable choice of the
nonlinear external force, we may have an exponential behavior, suggesting a connection
with standard thermostatistics. This fact reveals that these solutions may present an
anomalous relaxation process and then, reach an equilibrium state of the kind Boltzmann-
Gibbs. Next, we investigate a nonmarkovian linear diffusion equation that presents a
kernel leading to the anomalous diffusive process. Particularly, our first choice leads
to both a the usual behavior and anomalous behavior obtained through a fractionalderivative
equation. The results obtained, within this context, correspond to a change
in the waiting-time distribution for jumps in the formalism of random walks. These
modifications had direct influence in the solutions, that turned out to be expressed in
terms of the Mittag-Leffler or H of Fox functions. In this way, the second moment
associated to these distributions led to an anomalous spread of the distribution, in contrast
to the usual situation where one finds a linear increase with time === Investigamos varias equa??es de difus?o que estende o caso usual quando consideramos a presen?a de termos n?o lineares ou efeitos de mem?ria no termo difusivo. Tamb?m consideramos um coeficiente de difus?o com depend?ncia espacial e temporal. Para estas equa??es obtemos uma nova classe de solu??es e estudamos a conex?o delas com o processo difusivo An?malo. Inicialmente, ? incorporado um coeficiente de difus?o com depend?ncia espacial e temporal, numa., equa??o de difus?o n?o linear. A solu??o desta equa??o estende a solu??o usual e pode ser expressa em termos das fun??es, q exponenciais e q-logar?timicas, presentes no contexto da termoestat?stica generalizada (formalismo de Tsallis). Em seguida, consideramos uma for?a externa n?o linear. Para este caso as solu??es tamb?m podem ser expressa..,,> em termos das fun??es q exponenciais e
q-Iogar?timicas. Contudo, fazendo uma escolha adequada, da for?a externa n?o linear, podemos ter um comportamento exponencial, sugerindo uma conex?o com a termoestat?stica usual. Este fato, tamb?m nos revela que estas solu??es podem sofrer uma relaxa??o an?mala e atingir um estado de equil?brio do tipo Boltzrnann-Gibbs. Em seguida, investigamos uma equa??o de difus?o n?o markoviana linear que possui um kernel que leva a din?mica do processo difusivo. Particularmente, a nossa escolha na primeira etapa mistura tanto o comportamento usual quanto o comportamento obtido atrav?s de uma equa??o que emprega derivadas fracion?rias. Os resultados obtidos, neste contexto, pensando no formalismo de caminhantes aleat?rios, correspondem a uma mudan?a na distribui??o do tempo de espera entre saltos. Tais modifica??es influenciaram diretamente as solu??es que passaram a ser expressas em termos das fun??es de Mittag-Leffler ou H de Fox. Neste sentido, o segundo momento associado a estas distribui??es, nos levou a obter um alargamento da distribui??o de urna forma an?mala, diferente do caso usual que ? linear com o tempo
|