Summary: | Made available in DSpace on 2014-12-17T15:14:51Z (GMT). No. of bitstreams: 1
AderaldoILA.pdf: 552788 bytes, checksum: cd003388ac958c41a47622d93e45969e (MD5)
Previous issue date: 2010-03-12 === Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico === We present a nestedness index that measures the nestedness pattern of bipartite networks, a problem that arises in theoretical ecology. Our measure is derived using the sum of distances of the occupied elements in the adjacency matrix of the network. This index quantifies directly the deviation of a given matrix from the nested pattern. In the most simple case the distance of the matrix element ai,j is di,j = i+j, the Manhattan distance. A generic distance is obtained as di,j = (i? + j?)1/?. The nestedness ?ndex is defined by = 1 − where is the temperature of the matrix. We construct the temperature index using two benchmarks: the distance of the complete nested matrix that corresponds to zero temperature and the distance of the average random matrix that is defined as temperature one. We discuss an important feature of the problem: matrix occupancy. We address this question using a metric index ? that adjusts for matrix occupancy === Apresentamos um ?ndice de aninhamento que mede o padr?o de aninhamento de redes bipartidas, um problema que surge em ecologia te?rica. Nossa medida ? constru?da atrav?s da soma das dist?ncias dos elementos ocupados na matriz de adjac?ncia da rede. Este ?ndice quantifica diretamente o desvio de uma dada matriz em rela??o a um padr?o aninhado. No caso mais simples a dist?ncia do elemento ai,j da matriz ? di,j = i + j, a dist?ncia de Manhattan. Uma dist?ncia gen?rica ? obtida atrav?s de di,j = (i? + j?)1/?. O ?ndice de aninhamento ? definido por = 1 − , onde ? a temperatura da matriz. Constru?mos o ?ndice de temperatura utilizando dois padr?es de refer?ncia: a dist?ncia da matriz completamente aninhada, que corresponde `a temperatura zero, e a dist?ncia da matriz aleat?ria m?dia, definida de modo que sua temperatura seja um. Discutimos uma importante caracter?stica do problema, a ocupa??o da matriz. Abordamos esta quest?o introduzindo o ?ndice m?trico ? que permite o ajuste de matrizes com diferentes ocupa??es
|