Summary: | Made available in DSpace on 2014-12-17T14:56:22Z (GMT). No. of bitstreams: 1
DiegoMG.pdf: 1982662 bytes, checksum: e489eb42e914d358aaeb197489ceb5e4 (MD5)
Previous issue date: 2006-01-05 === There has been an increasing tendency on the use of selective image compression, since several applications make use of digital images and the loss of information in certain regions is not allowed in some cases. However, there are applications in which these images are captured and stored automatically making it impossible to the user to select the regions of interest to be compressed in a lossless manner. A possible solution for this matter would be the automatic selection of these regions, a very difficult problem to solve in general cases. Nevertheless, it is possible to use intelligent techniques to detect these regions in specific cases. This work proposes a selective color image compression method in which regions of interest, previously chosen, are compressed in a lossless manner. This method uses the wavelet transform to decorrelate the pixels of the image, competitive neural network to make a vectorial quantization, mathematical morphology, and Huffman adaptive coding. There are two options for automatic detection in addition to the manual one: a method of texture segmentation, in which the highest frequency texture is selected to be the region of interest, and a new face detection method where the region of the face will be lossless compressed. The results show that both can be successfully used with the compression method, giving the map of the region of interest as an input === A compress?o seletiva de imagens tende a ser cada vez mais utilizada, visto que diversas aplica??es fazem uso de imagens digitais que em alguns casos n?o permitem perdas de informa??es em certas regi?es. Por?m, existem aplica??es nas quais essas imagens s?o capturadas e armazenadas automaticamente, impossibilitando a um usu?rio indicar as regi?es da imagem que devem ser comprimidas sem perdas. Uma solu??o para esse problema seria a detec??o autom?tica das regi?es de interesse, um problema muito dif?cil de ser resolvido em casos gerais. Em certos casos, no entanto, pode-se utilizar t?cnicas inteligentes para detectar essas regi?es. Esta disserta??o apresenta um compressor seletivo de imagens coloridas onde as regi?es de interesse, previamente fornecidas, s?o comprimidas totalmente sem perdas. Este m?todo faz uso da transformada wavelet para descorrelacionar os pixels da imagem, de uma rede neural competitiva para realizar uma quantiza??o vetorial, da morfologia matem?tica e do c?digo adaptativo de Huffman. Al?m da op??o da sele??o manual das regi?es de interesse, existem duas op??es de detec??o autom?tica: um m?todo de segmenta??o de texturas, onde a textura com maior freq??ncia ? selecionada para ser a regi?o de interesse, e um novo m?todo de detec??o de faces onde a regi?o da face ? comprimida sem perdas. Os resultados mostram que ambos os m?todos podem ser utilizados com o algoritmo de compress?o, fornecendo a este o mapa de regi?o de interesse
|