Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural

Made available in DSpace on 2014-12-17T14:55:42Z (GMT). No. of bitstreams: 1 LeandroLSL_DISSERT.pdf: 1890433 bytes, checksum: 540cbd4cf39fb3515249b7cecd6d0dcc (MD5) Previous issue date: 2010-03-19 === Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico === Nowadays, where the market comp...

Full description

Bibliographic Details
Main Author: Linhares, Leandro Luttiane da Silva
Other Authors: CPF:82675090468
Format: Others
Language:Portuguese
Published: Universidade Federal do Rio Grande do Norte 2014
Subjects:
Online Access:http://repositorio.ufrn.br:8080/jspui/handle/123456789/15309
id ndltd-IBICT-oai-repositorio.ufrn.br-123456789-15309
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Sistema de infer?ncia
Redes neurais artificiais
An?lise de componentes principais
Colunas de destila??o
Inferential system
Artificial neural network
Principal component analysis
Distillation column
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
spellingShingle Sistema de infer?ncia
Redes neurais artificiais
An?lise de componentes principais
Colunas de destila??o
Inferential system
Artificial neural network
Principal component analysis
Distillation column
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Linhares, Leandro Luttiane da Silva
Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural
description Made available in DSpace on 2014-12-17T14:55:42Z (GMT). No. of bitstreams: 1 LeandroLSL_DISSERT.pdf: 1890433 bytes, checksum: 540cbd4cf39fb3515249b7cecd6d0dcc (MD5) Previous issue date: 2010-03-19 === Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico === Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study === Nos dias atuais, em que a concorr?ncia de mercado exige produtos de melhor qualidade e a busca constante pela redu??o de custos e pelo melhor aproveitamento das mat?rias-primas, a utiliza??o de estrat?gias de controle mais eficientes torna-se fundamental. Nas Unidades de Processamento de G?s Natural (UPGNs), assim como na maioria dos processos qu?micos, o controle de qualidade ? realizado a partir da composi??o de seus produtos. Entretanto, a an?lise de composi??es qu?micas, mesmo quando realizada por equipamentos como os cromat?grafos a g?s, apresenta longos intervalos de medi??o. Esse fato dificulta a elabora??o de estrat?gias de controle que proporcionem um melhor rendimento do processo. Geralmente, o principal produto econ?mico de uma UPGN ? o GLP (G?s Liquefeito de Petr?leo). Outros produtos comumente obtidos nessas unidades s?o a gasolina natural e o g?s residual. O GLP ? formado idealmente por propano e butano. Entretanto, na pr?tica, apresenta em sua composi??o contaminantes, tais como o etano e o pentano. Neste trabalho ? proposto um sistema de infer?ncia utilizando redes neurais para estimar as fra??es molares de etano e pentano no GLP e a fra??o molar de propano no g?s residual. O objetivo ? estimar essas vari?veis a cada minuto com uma ?nica rede neural de m?ltiplas camadas, permitindo a aplica??o de t?cnicas de controle inferencial visando a controlar a qualidade do GLP e reduzir a perda de propano no processo. No desenvolvimento deste trabalho, ? simulada no software HYSYS R uma UPGN formada por uma coluna de destila??o deetanizadora e outra debutanizadora. A infer?ncia ? realizada a partir das vari?veis de processo de alguns controladores PID presentes na instrumenta??o das colunas citadas. Com o intuito de reduzir a complexidade da rede neural de infer?ncia, ? utilizada a t?cnica estat?stica de an?lise de componentes principais (ACP) para diminuir o n?mero de entradas da rede. Tem-se, portanto, um sistema h?brido de infer?ncia. Tamb?m ? proposta neste trabalho, uma estrat?gia simples para a corre??o em tempo real do sistema de infer?ncia, tendo como base as medi??es dos poss?veis cromat?grafos de linha presentes no processo em estudo
author2 CPF:82675090468
author_facet CPF:82675090468
Linhares, Leandro Luttiane da Silva
author Linhares, Leandro Luttiane da Silva
author_sort Linhares, Leandro Luttiane da Silva
title Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural
title_short Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural
title_full Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural
title_fullStr Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural
title_full_unstemmed Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural
title_sort sistema h?brido de infer?ncia baseado em an?lise de componentes principais e redes neurais artificiais aplicado a plantas de processamento de g?s natural
publisher Universidade Federal do Rio Grande do Norte
publishDate 2014
url http://repositorio.ufrn.br:8080/jspui/handle/123456789/15309
work_keys_str_mv AT linharesleandroluttianedasilva sistemahbridodeinfernciabaseadoemanlisedecomponentesprincipaiseredesneuraisartificiaisaplicadoaplantasdeprocessamentodegsnatural
_version_ 1718670611220267008
spelling ndltd-IBICT-oai-repositorio.ufrn.br-123456789-153092018-05-23T23:21:17Z Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural Linhares, Leandro Luttiane da Silva CPF:82675090468 http://lattes.cnpq.br/5473196176458886 Maitelli, Andr? Laurindo CPF:42046637100 http://lattes.cnpq.br/0477027244297797 Moreira, Vicente Delgado CPF:02118457448 http://lattes.cnpq.br/4549279470957332 Ara?jo, F?bio Meneghetti Ugulino de Sistema de infer?ncia Redes neurais artificiais An?lise de componentes principais Colunas de destila??o Inferential system Artificial neural network Principal component analysis Distillation column CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Made available in DSpace on 2014-12-17T14:55:42Z (GMT). No. of bitstreams: 1 LeandroLSL_DISSERT.pdf: 1890433 bytes, checksum: 540cbd4cf39fb3515249b7cecd6d0dcc (MD5) Previous issue date: 2010-03-19 Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study Nos dias atuais, em que a concorr?ncia de mercado exige produtos de melhor qualidade e a busca constante pela redu??o de custos e pelo melhor aproveitamento das mat?rias-primas, a utiliza??o de estrat?gias de controle mais eficientes torna-se fundamental. Nas Unidades de Processamento de G?s Natural (UPGNs), assim como na maioria dos processos qu?micos, o controle de qualidade ? realizado a partir da composi??o de seus produtos. Entretanto, a an?lise de composi??es qu?micas, mesmo quando realizada por equipamentos como os cromat?grafos a g?s, apresenta longos intervalos de medi??o. Esse fato dificulta a elabora??o de estrat?gias de controle que proporcionem um melhor rendimento do processo. Geralmente, o principal produto econ?mico de uma UPGN ? o GLP (G?s Liquefeito de Petr?leo). Outros produtos comumente obtidos nessas unidades s?o a gasolina natural e o g?s residual. O GLP ? formado idealmente por propano e butano. Entretanto, na pr?tica, apresenta em sua composi??o contaminantes, tais como o etano e o pentano. Neste trabalho ? proposto um sistema de infer?ncia utilizando redes neurais para estimar as fra??es molares de etano e pentano no GLP e a fra??o molar de propano no g?s residual. O objetivo ? estimar essas vari?veis a cada minuto com uma ?nica rede neural de m?ltiplas camadas, permitindo a aplica??o de t?cnicas de controle inferencial visando a controlar a qualidade do GLP e reduzir a perda de propano no processo. No desenvolvimento deste trabalho, ? simulada no software HYSYS R uma UPGN formada por uma coluna de destila??o deetanizadora e outra debutanizadora. A infer?ncia ? realizada a partir das vari?veis de processo de alguns controladores PID presentes na instrumenta??o das colunas citadas. Com o intuito de reduzir a complexidade da rede neural de infer?ncia, ? utilizada a t?cnica estat?stica de an?lise de componentes principais (ACP) para diminuir o n?mero de entradas da rede. Tem-se, portanto, um sistema h?brido de infer?ncia. Tamb?m ? proposta neste trabalho, uma estrat?gia simples para a corre??o em tempo real do sistema de infer?ncia, tendo como base as medi??es dos poss?veis cromat?grafos de linha presentes no processo em estudo 2014-12-17T14:55:42Z 2010-09-09 2014-12-17T14:55:42Z 2010-03-19 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis LINHARES, Leandro Luttiane da Silva. Sistema H?brido de Infer?ncia Baseado em An?lise de Componentes Principais e Redes Neurais Artificiais Aplicado a Plantas de Processamento de G?s Natural. 2010. 119 f. Disserta??o (Mestrado em Automa??o e Sistemas; Engenharia de Computa??o; Telecomunica??es) - Universidade Federal do Rio Grande do Norte, Natal, 2010. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15309 por info:eu-repo/semantics/openAccess application/pdf Universidade Federal do Rio Grande do Norte Programa de P?s-Gradua??o em Engenharia El?trica UFRN BR Automa??o e Sistemas; Engenharia de Computa??o; Telecomunica??es reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte instacron:UFRN