Remo??o de ru?dos s?smicos utilizando transformada de wavelet 1D e 2D com software em desenvolvimento

Made available in DSpace on 2014-12-17T14:08:44Z (GMT). No. of bitstreams: 1 DanielE_DISSERT.pdf: 1217613 bytes, checksum: edb565b9e30a0c09780fcf4efd4a52dc (MD5) Previous issue date: 2011-04-05 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior === In the Hydrocarbon exploration activ...

Full description

Bibliographic Details
Main Author: Ecco, Daniel
Other Authors: CPF:00588750425
Format: Others
Language:Portuguese
Published: Universidade Federal do Rio Grande do Norte 2014
Subjects:
Online Access:http://repositorio.ufrn.br:8080/jspui/handle/123456789/12940
Description
Summary:Made available in DSpace on 2014-12-17T14:08:44Z (GMT). No. of bitstreams: 1 DanielE_DISSERT.pdf: 1217613 bytes, checksum: edb565b9e30a0c09780fcf4efd4a52dc (MD5) Previous issue date: 2011-04-05 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior === In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good === Na atividade explorat?ria de hidrocarbonetos a grande inc?gnita ? a localiza??o das jazidas. Grandes esfor?os s?o empreendidos na tentativa de melhor identific?-las, localiz?-las e, ao mesmo tempo, otimizar a rela??o custo-benef?cio da extra??o de Petr?leo. Os m?todos s?smicos s?o os mais utilizados pelo fato de serem indiretos, isto ?, sondam as camadas de subsuperf?cie sem invadi-las. O sismograma ? a representa??o do interior da Terra e de suas estruturas atrav?s de um arranjo convenientemente disposto dos dados obtidos por meio da s?smica de reflex?o. Um grande problema nessa representa??o ? a intensidade e variedade de ru?dos presentes no sismograma, como o ru?do de rolamento superficial que contamina os sinais relevantes e pode mascarar as informa??es desejadas, trazidas por ondas espalhadas em regi?es mais profundas das camadas geol?gicas. Desenvolvemos uma ferramenta para suprimir estes ru?dos que usa transformadas Wavelets 1D e 2D. O programa, em linguagem Java, faz a separa??o das imagens S?smicas considerando as dire??es (horizontal, vertical e mistas ou locais) e faixas de comprimentos de ondas que formam essas imagens, usando Wavelets de Daubechies, Autoresolu??o que duplica o comprimento das ondas e Produto Tensorial das bases de Wavelets. Desenvolvemos a op??o, em uma mesma imagem, de usar o produto tensorial de Wavelets de dimens?o 2 ou produto tensorial de Wavelets de dimens?o 1 pelas identidades. Neste ?ltimo caso, temos a Decomposi??o em Wavelets de um sinal bidimensional em uma ?nica dire??o. Esta decomposi??o permite alongar numa determinada dire??o as Wavelets bidimensionais, corrigindo efeitos de escalas ao aplicarmos Autoresolu??es. Em outras palavras, aperfei?oamos o tratamento de uma imagem s?smica, usandoWavelet 1D eWavelet 2D em etapas diferentes de Autoresolu??es. Tamb?m implementamos melhorias na visualiza??o das imagens associadas ?s decomposi??es em cada Autoresolu??o, facilitando as escolhas das imagens com os sinais de interesse para reconstru??o da imagem sem os ru?dos. O programa foi testado com dados reais e os resultados obtidos foram de boa qualidade