Modelos de acoplamento de SIS
Made available in DSpace on 2014-06-12T18:28:21Z (GMT). No. of bitstreams: 2 arquivo3003_1.pdf: 10717686 bytes, checksum: f612042d14b0a209086c28de2f37580c (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 === Neste trabalho, pretendemos es...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade Federal de Pernambuco
2014
|
Subjects: | |
Online Access: | https://repositorio.ufpe.br/handle/123456789/7015 |
id |
ndltd-IBICT-oai-repositorio.ufpe.br-123456789-7015 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
Epidemia Acoplamento de SIS Logísticos Reprodutividade basal Tempo de Extinção Processo de Markov Quase-Estacionário |
spellingShingle |
Epidemia Acoplamento de SIS Logísticos Reprodutividade basal Tempo de Extinção Processo de Markov Quase-Estacionário DIDIER, Maria Ângela Caldas Modelos de acoplamento de SIS |
description |
Made available in DSpace on 2014-06-12T18:28:21Z (GMT). No. of bitstreams: 2
arquivo3003_1.pdf: 10717686 bytes, checksum: f612042d14b0a209086c28de2f37580c (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2011 === Neste trabalho, pretendemos estudar as vantagens e as limitações dos modelos de acoplamento
de SIS(suscetíveis - infectados - suscetíveis) determinísticos e estocásticos. Nosso objetivo
principal é através de uma modelagem minimalista tentar explicitar algumas dificuldades encontradas
com a modelagem de doenças tão complexas como a Esquistossomose e as Infecçãoes
Hospitares. A alta variância nos dados obtidos em campo para tais modelos [6] têm sido um
obstáculo na descrição dessas doenças. É nossa intenção tentar descrever tal fenômeno como
sendo resultado de um simples acoplamento entre duas populações. Em um segundo momento,
pretendemos estabelecer relações entre conceitos determinísticos e os sistemas estocásticos a
exemplo do que é feito para o modelo SIS [19-b, 5, 10]. Tal relação permitiria uma melhor
descrição dos modelos estocásticos bem como discutir estratégias de controle. Para tanto, estudamos
a suscetibilidade dos modelos criados aos seus parâmetros de base. Como doenças
possíveis de serem estruturalmente conceituadas através de nossos modelos citamos novamente
os casos da Esquistossomose e das Infecções Hospitalares. Na primeira, temos a população de
humanos e a população de focos da doença. Na segunda, temos a população dos doentes e a
população composta por médicos e enfermeiros de um hospital. Com o propósito descrito acima,
desenvolvemos alguns modelos de acoplamento de modelos SIS determinísticos e estocásticos
para simular e estudar a dinâmica da difusão de infecções numa comunidade. Foi construído
um modelo estocástico computacional de acoplamento de dois SIS e um modelo determinístico
com propósito de descrever o modelo qualitativamente. Nos modelos determinísticos o valor
da reprodutividade basal representado pelo símbolo R0, determina a persistência ou extinção
da doença. Foi realizada uma análise da estabilidade do equilíbrio determinístico em função da
reprodutividade basal definida para o modelo determinístico. Para o modelo computacional,
estudamos a convergência para um equilíbrio do número de indivíduos infectados de cada popula
ção e da reprodutividade basal calculada. Analisamos o comportamento da reprodutividade
basal em função do tamanho de uma das populações e também, em função do tempo de recupera
ção dos indivíduos de uma população considerada. Observando a existência de epidemias
onde os indivíduos podem se infectar mais de uma vez(superinfecção) como por exemplo, a
esquistossomose, resolvemos acrescentar a condição de reinfecção no modelo computacional e
analisar o comportamento da reprodutividade basal. Foram construídos modelos estocásticos
de acoplamento de modelos SIS em tempo-discreto e em tempo-contínuo introduzindo um vetor
bidimensional de cadeias de Markov (X(t); Y (t)), t 0 onde X(t) representa o número de
indivíduos infectados de uma população H e Y (t), o número de indivíduos infectados de umapopulação F. Consideramos constantes os tamanhos das duas populações, as taxas de transmiss
ão e as taxas de recuperação. Estudamos numericamente o valor esperado do número de
indivíduos infectados da população H em função do tamanho da população F e, também, em
função do tempo de recuperação dos indivíduos da população F. Nos modelos estocásticos, em
alguns casos, o tempo até a extinção da doença pode ser muito longo. Portanto, investigamos a
possibilidade de construção de uma distribuição de probabilidade condicionada à não-extinção
da doença: a distribuição de probabilidade quase-estacionária. O tratamento analítico para a
sua obtenção é complexo e encontra um sem número de dificuldades. Recorremos então a aproxima
ções analíticas e numéricas para a sua determinação.Mostramos que o tempo de extinção
para o modelo de acoplamento em tempo contínuo construído com início em uma distribuição
quase-estacionária tem crescimento exponencial. Construímos um modelo de acoplamento de
SIS em tempo-contínuo sob uma abordagem estrutural dentro de um processo semi-Markoviano
permitindo formular explicitamente o tempo de espera para a extinção de uma epidemia e a
sua variância a partir do estado de infecção de cada população. Uma análise do valor esperado
para o tempo de extinção e de sua variância em função dos parâmetros do modelo foi realizada.
Finalmente, construímos um modelo de acoplamento de SIS onde foi dado um tratamento determin
ístico e estudamos o equilíbrio da matriz de covariância para as variáveis aleatórias que
representam os números de indivíduos infectados de cada população |
author2 |
CASTILHO, César Augusto Rodrigues |
author_facet |
CASTILHO, César Augusto Rodrigues DIDIER, Maria Ângela Caldas |
author |
DIDIER, Maria Ângela Caldas |
author_sort |
DIDIER, Maria Ângela Caldas |
title |
Modelos de acoplamento de SIS |
title_short |
Modelos de acoplamento de SIS |
title_full |
Modelos de acoplamento de SIS |
title_fullStr |
Modelos de acoplamento de SIS |
title_full_unstemmed |
Modelos de acoplamento de SIS |
title_sort |
modelos de acoplamento de sis |
publisher |
Universidade Federal de Pernambuco |
publishDate |
2014 |
url |
https://repositorio.ufpe.br/handle/123456789/7015 |
work_keys_str_mv |
AT didiermariaangelacaldas modelosdeacoplamentodesis |
_version_ |
1718861483339677696 |
spelling |
ndltd-IBICT-oai-repositorio.ufpe.br-123456789-70152019-01-21T19:09:29Z Modelos de acoplamento de SIS DIDIER, Maria Ângela Caldas CASTILHO, César Augusto Rodrigues Epidemia Acoplamento de SIS Logísticos Reprodutividade basal Tempo de Extinção Processo de Markov Quase-Estacionário Made available in DSpace on 2014-06-12T18:28:21Z (GMT). No. of bitstreams: 2 arquivo3003_1.pdf: 10717686 bytes, checksum: f612042d14b0a209086c28de2f37580c (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 Neste trabalho, pretendemos estudar as vantagens e as limitações dos modelos de acoplamento de SIS(suscetíveis - infectados - suscetíveis) determinísticos e estocásticos. Nosso objetivo principal é através de uma modelagem minimalista tentar explicitar algumas dificuldades encontradas com a modelagem de doenças tão complexas como a Esquistossomose e as Infecçãoes Hospitares. A alta variância nos dados obtidos em campo para tais modelos [6] têm sido um obstáculo na descrição dessas doenças. É nossa intenção tentar descrever tal fenômeno como sendo resultado de um simples acoplamento entre duas populações. Em um segundo momento, pretendemos estabelecer relações entre conceitos determinísticos e os sistemas estocásticos a exemplo do que é feito para o modelo SIS [19-b, 5, 10]. Tal relação permitiria uma melhor descrição dos modelos estocásticos bem como discutir estratégias de controle. Para tanto, estudamos a suscetibilidade dos modelos criados aos seus parâmetros de base. Como doenças possíveis de serem estruturalmente conceituadas através de nossos modelos citamos novamente os casos da Esquistossomose e das Infecções Hospitalares. Na primeira, temos a população de humanos e a população de focos da doença. Na segunda, temos a população dos doentes e a população composta por médicos e enfermeiros de um hospital. Com o propósito descrito acima, desenvolvemos alguns modelos de acoplamento de modelos SIS determinísticos e estocásticos para simular e estudar a dinâmica da difusão de infecções numa comunidade. Foi construído um modelo estocástico computacional de acoplamento de dois SIS e um modelo determinístico com propósito de descrever o modelo qualitativamente. Nos modelos determinísticos o valor da reprodutividade basal representado pelo símbolo R0, determina a persistência ou extinção da doença. Foi realizada uma análise da estabilidade do equilíbrio determinístico em função da reprodutividade basal definida para o modelo determinístico. Para o modelo computacional, estudamos a convergência para um equilíbrio do número de indivíduos infectados de cada popula ção e da reprodutividade basal calculada. Analisamos o comportamento da reprodutividade basal em função do tamanho de uma das populações e também, em função do tempo de recupera ção dos indivíduos de uma população considerada. Observando a existência de epidemias onde os indivíduos podem se infectar mais de uma vez(superinfecção) como por exemplo, a esquistossomose, resolvemos acrescentar a condição de reinfecção no modelo computacional e analisar o comportamento da reprodutividade basal. Foram construídos modelos estocásticos de acoplamento de modelos SIS em tempo-discreto e em tempo-contínuo introduzindo um vetor bidimensional de cadeias de Markov (X(t); Y (t)), t 0 onde X(t) representa o número de indivíduos infectados de uma população H e Y (t), o número de indivíduos infectados de umapopulação F. Consideramos constantes os tamanhos das duas populações, as taxas de transmiss ão e as taxas de recuperação. Estudamos numericamente o valor esperado do número de indivíduos infectados da população H em função do tamanho da população F e, também, em função do tempo de recuperação dos indivíduos da população F. Nos modelos estocásticos, em alguns casos, o tempo até a extinção da doença pode ser muito longo. Portanto, investigamos a possibilidade de construção de uma distribuição de probabilidade condicionada à não-extinção da doença: a distribuição de probabilidade quase-estacionária. O tratamento analítico para a sua obtenção é complexo e encontra um sem número de dificuldades. Recorremos então a aproxima ções analíticas e numéricas para a sua determinação.Mostramos que o tempo de extinção para o modelo de acoplamento em tempo contínuo construído com início em uma distribuição quase-estacionária tem crescimento exponencial. Construímos um modelo de acoplamento de SIS em tempo-contínuo sob uma abordagem estrutural dentro de um processo semi-Markoviano permitindo formular explicitamente o tempo de espera para a extinção de uma epidemia e a sua variância a partir do estado de infecção de cada população. Uma análise do valor esperado para o tempo de extinção e de sua variância em função dos parâmetros do modelo foi realizada. Finalmente, construímos um modelo de acoplamento de SIS onde foi dado um tratamento determin ístico e estudamos o equilíbrio da matriz de covariância para as variáveis aleatórias que representam os números de indivíduos infectados de cada população 2014-06-12T18:28:21Z 2014-06-12T18:28:21Z 2011-01-31 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis Ãngela caldas Didier, Maria; Augusto Rodrigues Castilho, César. Modelos de acoplamento de SIS. 2011. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2011. https://repositorio.ufpe.br/handle/123456789/7015 por info:eu-repo/semantics/openAccess Universidade Federal de Pernambuco reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco instacron:UFPE |