Bi-clustering de Dados Genéticos Binários Baseado em Modelos de Classificação Logística

Made available in DSpace on 2014-06-12T18:28:11Z (GMT). No. of bitstreams: 2 arquivo2996_1.pdf: 1090235 bytes, checksum: c9df39a664777bc77995e62019585122 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 === Informações de interações de prote...

Full description

Bibliographic Details
Main Author: Claudia da Rocha Rego Monteiro, Carla
Other Authors: Silva Guimarães, Katia
Language:Portuguese
Published: Universidade Federal de Pernambuco 2014
Subjects:
Online Access:https://repositorio.ufpe.br/handle/123456789/6991
Description
Summary:Made available in DSpace on 2014-06-12T18:28:11Z (GMT). No. of bitstreams: 2 arquivo2996_1.pdf: 1090235 bytes, checksum: c9df39a664777bc77995e62019585122 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 === Informações de interações de proteínas são fundamentais para a compreensão dos processos celulares. Por esta razão, várias abordagens têm sido propostas para inferir sobre pares de proteínas de redes de todos os tipos de dados biológicos. Nesta tese é proposto um método de bi-clustering, Lbic, baseado num modelo de classificação logística, para analisar dados biológicos binários. O Lbic é comparado com outros dois métodos de bi-clustering apresentados na literatura, mostrando melhores resultados. Seu desempenho também é comparado àqueles de um método supervisionado, análise de correlação canônica com Kernel, aplicado aos mesmos conjuntos de dados. Os resultados mostram que o Lbic alcança desempenho superior aos da aborgadem supervisionada treinada com até 25% do conhecimento da rede alvo