Clusterização baseada em algoritmos fuzzy

Made available in DSpace on 2014-06-12T15:59:42Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 === Análise de cluster é uma técnica aplicada a diversas áreas como mineração de dados, reconhecimento de padrões, proce...

Full description

Bibliographic Details
Main Author: Lopes Cavalcanti Junior, Nicomedes
Other Authors: de Assis Tenório Carvalho, Francisco
Language:Portuguese
Published: Universidade Federal de Pernambuco 2014
Subjects:
Online Access:https://repositorio.ufpe.br/handle/123456789/2619
id ndltd-IBICT-oai-repositorio.ufpe.br-123456789-2619
record_format oai_dc
spelling ndltd-IBICT-oai-repositorio.ufpe.br-123456789-26192019-01-21T19:04:03Z Clusterização baseada em algoritmos fuzzy Lopes Cavalcanti Junior, Nicomedes de Assis Tenório Carvalho, Francisco Mineração de dados Distância adaptativa Aprendizagem de máquina Agrupamento nebuloso Fuzzy c-means Made available in DSpace on 2014-06-12T15:59:42Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 Análise de cluster é uma técnica aplicada a diversas áreas como mineração de dados, reconhecimento de padrões, processamento de imagens. Algoritmos de clusterização têm por objetivo particionar um conjunto de dados em clusters de tal forma que indivíduos dentro de um mesmo cluster tenham um alto grau de similaridade, enquanto indivíduos pertencentes a diferentes clusters tenham alto grau de dissimilaridade. Uma importante divisão dos algoritmos de clusterização é entre algoritmos hard e fuzzy. Algoritmos hard associam um indivíduo a somente um cluster. Ao contrário, algoritmos fuzzy associam um indivíduo a todos os clusters através da variação do grau de pertinência do indivíduo em cada cluster. A vantagem de um algoritmo clusterização fuzzy é que este pode representar melhor incerteza e este fato é importante, por exemplo, para mostrar que um indivíduo não é um típico indivíduo de nenhuma das classes, mas tem similaridade em maior ou menor grau com mais de uma classe. Uma forma intuitiva de medir similaridade entre indivíduos é usar medidas de distância tais como a distância euclidiana. Existem muitas medidas de distância disponíveis na literatura. Muitos dos algoritmos de clusterização populares geralmente buscam minimizar um critério baseados numa medida de distância. Através de um processo iterativo estes algoritmos calculam parâmetros de modo a diminuir o valor do critério iteração a iteração até um estado de convergência ser atingido. O problema com muitas das distâncias encontradas na literatura é que elas são estáticas. Para o caso de algoritmos de clusterização iterativos, parece razoável ter distâncias que mudem ou atualizem seus valores de acordo com o que for ocorrendo com os dados e as estruturas de dado do algoritmo. Esta dissertação apresenta duas distâncias adaptativas aplicadas ao algoritmo fuzzy c-means pelo Prof. Francisco de Carvalho. Este algoritmo foi escolhido pelo fato de ser amplamente utilizado. Para avaliar as proposições de distância, experimentos foram feitos utilizando-se conjunto de dados de referência e conjuntos de dados artificiais (para ter resultados mais precisos experimentos do tipo Monte Carlo foram realizados neste caso). Até o momento, comparações das versões do fuzzy c-means, obtidas através da utilização de distâncias adaptativas, com algoritmos similares da literatura permitem concluir que em geral as novas versões têm melhor performance que outros disponíveis na literatura 2014-06-12T15:59:42Z 2014-06-12T15:59:42Z 2006 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis Lopes Cavalcanti Junior, Nicomedes; de Assis Tenório Carvalho, Francisco. Clusterização baseada em algoritmos fuzzy. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006. https://repositorio.ufpe.br/handle/123456789/2619 por info:eu-repo/semantics/openAccess Universidade Federal de Pernambuco reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco instacron:UFPE
collection NDLTD
language Portuguese
sources NDLTD
topic Mineração de dados
Distância adaptativa
Aprendizagem de máquina
Agrupamento nebuloso
Fuzzy c-means
spellingShingle Mineração de dados
Distância adaptativa
Aprendizagem de máquina
Agrupamento nebuloso
Fuzzy c-means
Lopes Cavalcanti Junior, Nicomedes
Clusterização baseada em algoritmos fuzzy
description Made available in DSpace on 2014-06-12T15:59:42Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 === Análise de cluster é uma técnica aplicada a diversas áreas como mineração de dados, reconhecimento de padrões, processamento de imagens. Algoritmos de clusterização têm por objetivo particionar um conjunto de dados em clusters de tal forma que indivíduos dentro de um mesmo cluster tenham um alto grau de similaridade, enquanto indivíduos pertencentes a diferentes clusters tenham alto grau de dissimilaridade. Uma importante divisão dos algoritmos de clusterização é entre algoritmos hard e fuzzy. Algoritmos hard associam um indivíduo a somente um cluster. Ao contrário, algoritmos fuzzy associam um indivíduo a todos os clusters através da variação do grau de pertinência do indivíduo em cada cluster. A vantagem de um algoritmo clusterização fuzzy é que este pode representar melhor incerteza e este fato é importante, por exemplo, para mostrar que um indivíduo não é um típico indivíduo de nenhuma das classes, mas tem similaridade em maior ou menor grau com mais de uma classe. Uma forma intuitiva de medir similaridade entre indivíduos é usar medidas de distância tais como a distância euclidiana. Existem muitas medidas de distância disponíveis na literatura. Muitos dos algoritmos de clusterização populares geralmente buscam minimizar um critério baseados numa medida de distância. Através de um processo iterativo estes algoritmos calculam parâmetros de modo a diminuir o valor do critério iteração a iteração até um estado de convergência ser atingido. O problema com muitas das distâncias encontradas na literatura é que elas são estáticas. Para o caso de algoritmos de clusterização iterativos, parece razoável ter distâncias que mudem ou atualizem seus valores de acordo com o que for ocorrendo com os dados e as estruturas de dado do algoritmo. Esta dissertação apresenta duas distâncias adaptativas aplicadas ao algoritmo fuzzy c-means pelo Prof. Francisco de Carvalho. Este algoritmo foi escolhido pelo fato de ser amplamente utilizado. Para avaliar as proposições de distância, experimentos foram feitos utilizando-se conjunto de dados de referência e conjuntos de dados artificiais (para ter resultados mais precisos experimentos do tipo Monte Carlo foram realizados neste caso). Até o momento, comparações das versões do fuzzy c-means, obtidas através da utilização de distâncias adaptativas, com algoritmos similares da literatura permitem concluir que em geral as novas versões têm melhor performance que outros disponíveis na literatura
author2 de Assis Tenório Carvalho, Francisco
author_facet de Assis Tenório Carvalho, Francisco
Lopes Cavalcanti Junior, Nicomedes
author Lopes Cavalcanti Junior, Nicomedes
author_sort Lopes Cavalcanti Junior, Nicomedes
title Clusterização baseada em algoritmos fuzzy
title_short Clusterização baseada em algoritmos fuzzy
title_full Clusterização baseada em algoritmos fuzzy
title_fullStr Clusterização baseada em algoritmos fuzzy
title_full_unstemmed Clusterização baseada em algoritmos fuzzy
title_sort clusterização baseada em algoritmos fuzzy
publisher Universidade Federal de Pernambuco
publishDate 2014
url https://repositorio.ufpe.br/handle/123456789/2619
work_keys_str_mv AT lopescavalcantijuniornicomedes clusterizacaobaseadaemalgoritmosfuzzy
_version_ 1718859795556990976