Dynamical system modeling with probabilistic finite state automata
Submitted by Fernanda Rodrigues de Lima (fernanda.rlima@ufpe.br) on 2018-08-02T22:51:47Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Daniel Kudlowiez Franch.pdf: 1140156 bytes, checksum: c02b1b4ca33f8165be5960ba5a212730 (MD5) === Approved...
Main Author: | |
---|---|
Other Authors: | |
Language: | English |
Published: |
Universidade Federal de Pernambuco
2018
|
Subjects: | |
Online Access: | https://repositorio.ufpe.br/handle/123456789/25448 |
id |
ndltd-IBICT-oai-repositorio.ufpe.br-123456789-25448 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IBICT-oai-repositorio.ufpe.br-123456789-254482019-01-21T19:26:32Z Dynamical system modeling with probabilistic finite state automata FRANCH, Daniel Kudlowiez http://lattes.cnpq.br/5487403470787929 PIMENTEL, Cecilio José Lins CHAVES, Daniel Pedro Bezerra Engenharia Elétrica Clustering Dynamical systems Graph minimization Synchronization word Probabilistic finite state automata Submitted by Fernanda Rodrigues de Lima (fernanda.rlima@ufpe.br) on 2018-08-02T22:51:47Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Daniel Kudlowiez Franch.pdf: 1140156 bytes, checksum: c02b1b4ca33f8165be5960ba5a212730 (MD5) Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-08-07T21:11:31Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Daniel Kudlowiez Franch.pdf: 1140156 bytes, checksum: c02b1b4ca33f8165be5960ba5a212730 (MD5) Made available in DSpace on 2018-08-07T21:11:31Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Daniel Kudlowiez Franch.pdf: 1140156 bytes, checksum: c02b1b4ca33f8165be5960ba5a212730 (MD5) Previous issue date: 2017-03-10 FACEPE Discrete dynamical systems are widely used in a variety of scientific and engineering applications, such as electrical circuits, machine learning, meteorology and neurobiology. Modeling these systems involves performing statistical analysis of the system output to estimate the parameters of a model so it can behave similarly to the original system. These models can be used for simulation, performance analysis, fault detection, among other applications. The current work presents two new algorithms to model discrete dynamical systems from two categories (synchronizable and non-synchronizable) using Probabilistic Finite State Automata (PFSA) by analyzing discrete symbolic sequences generated by the original system and applying statistical methods and inference, machine learning algorithms and graph minimization techniques to obtain compact, precise and efficient PFSA models. Their performance and time complexity are compared with other algorithms present in literature that aim to achieve the same goal by applying the algorithms to a series of common examples. Sistemas dinâmicos discretos são amplamente usados em uma variedade de aplicações cientifícas e de engenharia, por exemplo, circuitos elétricos, aprendizado de máquina, meteorologia e neurobiologia. O modelamento destes sistemas envolve realizar uma análise estatística de sequências de saída do sistema para estimar parâmetros de um modelo para que este se comporte de maneira similar ao sistema original. Esses modelos podem ser usados para simulação, referência ou detecção de falhas. Este trabalho apresenta dois novos algoritmos para modelar sistemas dinâmicos discretos de duas categorias (sincronizáveis e não-sincronizáveis) por meio de Autômatos Finitos Probabilísticos (PFSA, Probabilistic Finite State Automata) analisando sequências geradas pelo sistema original e aplicando métodos estatísticos, algoritmos de aprendizado de máquina e técnicas de minimização de grafos para obter modelos PFSA compactos e eficientes. Sua performance e complexidade temporal são comparadas com algoritmos presentes na literatura que buscam atingir o mesmo objetivo aplicando os algoritmos a uma série de exemplos. 2018-08-07T21:11:31Z 2018-08-07T21:11:31Z 2017-03-10 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis https://repositorio.ufpe.br/handle/123456789/25448 eng Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess Universidade Federal de Pernambuco Programa de Pos Graduacao em Engenharia Eletrica UFPE Brasil reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco instacron:UFPE |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
topic |
Engenharia Elétrica Clustering Dynamical systems Graph minimization Synchronization word Probabilistic finite state automata |
spellingShingle |
Engenharia Elétrica Clustering Dynamical systems Graph minimization Synchronization word Probabilistic finite state automata FRANCH, Daniel Kudlowiez Dynamical system modeling with probabilistic finite state automata |
description |
Submitted by Fernanda Rodrigues de Lima (fernanda.rlima@ufpe.br) on 2018-08-02T22:51:47Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Daniel Kudlowiez Franch.pdf: 1140156 bytes, checksum: c02b1b4ca33f8165be5960ba5a212730 (MD5) === Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-08-07T21:11:31Z (GMT) No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Daniel Kudlowiez Franch.pdf: 1140156 bytes, checksum: c02b1b4ca33f8165be5960ba5a212730 (MD5) === Made available in DSpace on 2018-08-07T21:11:31Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
DISSERTAÇÃO Daniel Kudlowiez Franch.pdf: 1140156 bytes, checksum: c02b1b4ca33f8165be5960ba5a212730 (MD5)
Previous issue date: 2017-03-10 === FACEPE === Discrete dynamical systems are widely used in a variety of scientific and engineering applications, such as electrical circuits, machine learning, meteorology and neurobiology. Modeling these systems involves performing statistical analysis of the system output to estimate the parameters of a model so it can behave similarly to the original system. These models can be used for simulation, performance analysis, fault detection, among other applications. The current work presents two new algorithms to model discrete dynamical systems from two categories (synchronizable and non-synchronizable) using Probabilistic Finite State Automata (PFSA) by analyzing discrete symbolic sequences generated by the original system and applying statistical methods and inference, machine learning algorithms and graph minimization techniques to obtain compact, precise and efficient PFSA models. Their performance and time complexity are compared with other algorithms present in literature that aim to achieve the same goal by applying the algorithms to a series of common examples. === Sistemas dinâmicos discretos são amplamente usados em uma variedade de aplicações cientifícas e de engenharia, por exemplo, circuitos elétricos, aprendizado de máquina, meteorologia e neurobiologia. O modelamento destes sistemas envolve realizar uma análise estatística de sequências de saída do sistema para estimar parâmetros de um modelo para que este se comporte de maneira similar ao sistema original. Esses modelos podem ser usados para simulação, referência ou detecção de falhas. Este trabalho apresenta dois novos algoritmos para modelar sistemas dinâmicos discretos de duas categorias (sincronizáveis e não-sincronizáveis) por meio de Autômatos Finitos Probabilísticos (PFSA, Probabilistic Finite State Automata) analisando sequências geradas pelo sistema original e aplicando métodos estatísticos, algoritmos de aprendizado de máquina e técnicas de minimização de grafos para obter modelos PFSA compactos e eficientes. Sua performance e complexidade temporal são comparadas com algoritmos presentes na literatura que buscam atingir o mesmo objetivo aplicando os algoritmos a uma série de exemplos. |
author2 |
http://lattes.cnpq.br/5487403470787929 |
author_facet |
http://lattes.cnpq.br/5487403470787929 FRANCH, Daniel Kudlowiez |
author |
FRANCH, Daniel Kudlowiez |
author_sort |
FRANCH, Daniel Kudlowiez |
title |
Dynamical system modeling with probabilistic finite state automata |
title_short |
Dynamical system modeling with probabilistic finite state automata |
title_full |
Dynamical system modeling with probabilistic finite state automata |
title_fullStr |
Dynamical system modeling with probabilistic finite state automata |
title_full_unstemmed |
Dynamical system modeling with probabilistic finite state automata |
title_sort |
dynamical system modeling with probabilistic finite state automata |
publisher |
Universidade Federal de Pernambuco |
publishDate |
2018 |
url |
https://repositorio.ufpe.br/handle/123456789/25448 |
work_keys_str_mv |
AT franchdanielkudlowiez dynamicalsystemmodelingwithprobabilisticfinitestateautomata |
_version_ |
1718865447804207104 |