Utilização de técnicas de inteligência artificial para classificação de crianças cardiopatas em base de dados desbalanceadas

Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-12T17:23:07Z No. of bitstreams: 2 Dissertacao Thiago Tavares.pdf: 3582760 bytes, checksum: dfee6c424fc987631aeae3fbd4e4e524 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) === Approved for entry into ar...

Full description

Bibliographic Details
Main Author: Tavares, Thiago Ribeiro
Other Authors: Oliveira, Adriano Lorena Inácio de
Language:br
Published: Universidade Federal de Pernambuco 2015
Subjects:
Online Access:https://repositorio.ufpe.br/handle/123456789/12436
Description
Summary:Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-12T17:23:07Z No. of bitstreams: 2 Dissertacao Thiago Tavares.pdf: 3582760 bytes, checksum: dfee6c424fc987631aeae3fbd4e4e524 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) === Approved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-13T13:23:44Z (GMT) No. of bitstreams: 2 Dissertacao Thiago Tavares.pdf: 3582760 bytes, checksum: dfee6c424fc987631aeae3fbd4e4e524 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) === Made available in DSpace on 2015-03-13T13:23:44Z (GMT). No. of bitstreams: 2 Dissertacao Thiago Tavares.pdf: 3582760 bytes, checksum: dfee6c424fc987631aeae3fbd4e4e524 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013 === As doenças cardiovasculares são as que mais matam no Brasil e no mundo. Dessas, a cardiopatia congênita, uma malformação cardíaca presente desde o nascimento, acomete 8 a 10 em cada 1000 nascidos vivos e aproximadamente 1/3 deles necessitam de tratamento já no primeiro ano de vida. Inúmeros trabalhos demonstram que quanto antes for estabelecido o diagnóstico maiores serão as chances de sucesso no tratamento. O atendimento de crianças com suspeita de cardiopatia gera uma grande quantidade de informação, porém a diferenciação entre sinais e sintomas normais ou patológicos logo no início, por exemplo, na marcação da consulta, pode ser aspecto fundamental para agilizar o atendimento. Há algum tempo a Inteligência Artificial, mais especificamente a subárea de Mineração de Dados, tem sido utilizada como ferramenta de suporte à decisão médica em diversas especialidades, inclusive na cardiologia. Apesar da maioria das aplicações nesse contexto utilizarem Árvore de Decisão para classificação devido ao seu poder de interpretação e extração de regras, Máquinas de Vetor de Suporte (Support Vector Machines - SVM) têm demonstrado, em várias aplicações, um maior poder de generalização apresentando melhores resultados. No entanto, esse tipo de algoritmo, caixa-preta, não produz um conhecimento explícito de modo que um médico, especialista no domínio, possa interpretá-lo. A proposta desse trabalho é o desenvolvimento de um sistema de apoio à decisão médica que auxilie na detecção de cardiopatias em crianças, a partir de dados iniciais, como gênero, peso, altura e presença de sopros, com o objetivo de priorizar o seu atendimento médico. Técnicas para lidar com bases de dados desbalanceadas, tais como SMOTE e SVM com pesos foram utilizadas a fim de melhorar os resultados com relação a classificadores convencionais. Além disso, foi possível realizar a extração de regras a partir dos resultados obtidos pela SVM. Segundo os especialistas, os resultados obtidos viabilizam a utilização do sistema de apoio à decisão que pode ser incorporado à prática clínica para melhorar a qualidade dos serviços prestados.