Summary: | Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2014-01-13T19:57:26Z
No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_DesenvolvimentoMetodologiasAutomaticas.pdf: 1143947 bytes, checksum: 8fc7b7409ff57fceb1ecd680a1020795 (MD5) === Approved for entry into archive by Ana Rosa Silva(arosa@ufpa.br) on 2014-01-16T15:16:01Z (GMT) No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_DesenvolvimentoMetodologiasAutomaticas.pdf: 1143947 bytes, checksum: 8fc7b7409ff57fceb1ecd680a1020795 (MD5) === Made available in DSpace on 2014-01-16T15:16:01Z (GMT). No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_DesenvolvimentoMetodologiasAutomaticas.pdf: 1143947 bytes, checksum: 8fc7b7409ff57fceb1ecd680a1020795 (MD5)
Previous issue date: 2012 === Neste trabalho, são propostas metodologias para otimização do parâmetro de forma local c do método RPIM (Radial Point Interpolation Method). Com as técnicas apresentadas, é possível reduzir problemas com inversão de matrizes comuns em métodos sem malha e, também, garantir um maior grau de liberdade e precisão para a utilização da técnica, já que se torna possível uma definição semi-automática dos fatores de forma mais adequados para cada domínio de suporte. Além disso, é apresentado um algoritmo baseado no Line Sweep para a geração eficiente dos domínios de suporte. === In this thesis, a methodology is proposed for automatically (and locally) obtaining the shape
factor c for the Gaussian basis functions, for each support domain, in order to increase numerical
precision and mainly to avoid matrix inversion impossibilities. The concept of calibration
function is introduced, which is used for obtaining c. The methodology developed was applied
for a 2-D numerical experiment, which results are compared to analytical solution. This comparison
revels that the results associated to the developed methodology are very close to the
analytical solution for the entire bandwidth of the excitation pulse. The proposed methodology
is called in this work Local Shape Factor Calibration Method (LSFCM).
|