Summary: | Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-12-10T16:54:22Z
No. of bitstreams: 0 === Made available in DSpace on 2015-12-10T16:54:22Z (GMT). No. of bitstreams: 0 === Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) === Tratamentos braquiterápicos são comumente realizados conforme o relatório da American Association of Physicists in Medicine (AAPM), Task Group report TG-43U1, o qual define o formalismo para cálculo de dose absorvida na água e não considera a composição dos materiais, densidades, dimensões do paciente e o efeito dos aplicadores. Estes efeitos podem ser significantes, conforme descrito pelo recente relatório da AAPM, Task Group report TG- 186, que define diretrizes para que sistemas de planejamento modernos, capazes de considerar as complexidades descritas acima, sejam implementados. Esta tese tem como objetivo contribuir para o aumento da exatidão dos planejamentos de tratamento braquiterápicos, seguindo as recomendações do TG-186 e indo além do mesmo. Um software foi desenvolvido para integrar planejamentos de tratamento e simulações pelo método de Monte Carlo (MC); modelos acurados, CAD-Mesh, foram utilizados para representar aplicadores braquiterápicos; Grandezas utilizadas para reportar dose absorvida, Dw,m (dose para água no meio) e Dm,m (dose para o meio no meio), foram calculadas para um tratamento de cabeça e pescoço, considerando a teoria para pequenas (SCT small cavity theory) e grandes cavidades (LCT large cavity theory); a componente da dose em razão do movimento da fonte foi avaliada para tratamentos de próstata e ginecológicos. Perfis de velocidade obtidos na literatura foram utilizados; medidas de velocidade de uma fonte braquiterapica foram realizadas com uma câmera de alta taxa de aquisição. Cálculos de dose obtidos usando MC (incluindo a composição e densidade dos tecidos, ar e o aplicador) mostram sobredoses de aproximadamente 5% dentro do volume alvo, em um tratamento ginecológico, quando comparados aos resultados obtidos com um meio homogêneo de água. Por sua vez, subdoses de aproximadamente 5% foram observadas ao considerar a composição dos tecidos e regiões com ar em um tratamento intersticial de braço. Um aplicador cilíndrico oco resultou na sobredose observada no caso ginecológico, ressaltando a necessidade de modelos acurados para representar os aplicadores. Os modelos CAD-Mesh utilizados incluem um aplicador Fletcher-Williamson, com blindagem, e um balão deformável para irradiação de mama. Os resultados obtidos com estes modelos são equivalentes aos obtidos com modelos geométricos convencionais. Este recurso pode ser conveniente para aplicadores complexos e/ou quando o projeto dos aplicadores for disponibilizado pelo fabricante. Cálculos de dose, com a composição real dos tecidos humanos, podem apresentar diferenças significativas em razão da grandeza adotada. Diferenças entre Dm,m e Dw,m (SCT ou LCT) chegam a 14% em razão da composição do osso. A metodologia adotada (SCT ou LCT) resulta em diferenças de até 28% para o osso e 36% para os dentes. A componente de dose de trânsito também pode levar a diferenças significativas, uma vez que baixas velocidades ou movimentos uniformemente acelerados foram descritos na literatura. Considerando a pior condição e sem incluir nenhuma correção no tempo de parada, a dose de trânsito pode chegar a 3% da dose prescrita para um caso ginecológico, com 4 cateteres, e até 11.1% da dose prescrita para um tratamento de próstata, com 16 cateteres. A dose de trânsito para a fonte avaliada (velocidade obtida experimentalmente) não é uniformemente distribuída e pode levar a sub ou sobredoses de até 1.4% das doses comumente prescritas (310 Gy). Os tópicos estudados são relevantes para tratamentos braquiterápicos e podem contribuir para o aumento de sua acurácia. Os efeitos estudados podem ser avaliados com o uso do software, associado a um código MC, desenvolvido. === Tese (Doutorado em Tecnologia Nuclear) === IPEN/T === Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP === FAPESP:11/01913-4
|