Geometria extrínseca de campos de vetores em R3

Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-06-29T19:22:20Z No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Approved for entry into a...

Full description

Bibliographic Details
Main Author: Gomes, Alacy José
Other Authors: Garcia, Ronaldo Alves
Format: Others
Language:Portuguese
Published: Universidade Federal de Goiás 2018
Subjects:
Online Access:http://repositorio.bc.ufg.br/tede/handle/tede/8636
Description
Summary:Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-06-29T19:22:20Z No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:20:24Z (GMT) No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Made available in DSpace on 2018-07-03T15:20:24Z (GMT). No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13 === In this work we first consider regular vector fields : R3 􀀀! R3 and its orthogonal distribution of planes. We present a characterization of the normal curvature associated to and the system of implicit differential equations 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; which define two one-dimensional singular and orthogonal foliations, which we call by principal foliations and whose leaves are the principal lines of the distribution . Next we describe the configurations of the principal foliations in a neighborhood of the generic singular points that constitutes a regular curve in R3, which are denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed by studying the stability of the closed principal lines and we also present a Kupka- Smale genericity result. To conclude, we study the structure of the singularities of the principal foliations in a neighborhood of a singular hyperbolic point of the vector field . === Neste trabalho consideramos inicialmente campos de vetores regulares : R3 􀀀! R3 e sua distribuições ortogonais de planos . Apresentamos uma caracterização da curvatura normal associada a e do sistema de equações diferenciais implícitas, 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; que definem duas folheações unidimensionais singulares e ortogonais, denominadas de folheações principais e cujas folhas são as linhas principais da distribuição . A seguir descrevemos as configurações das folheações principais, numa vizinhança dos pontos singulares genéricos que constituem uma curva regular em R3, denominados de pontos parcialmente umbílicos Darbouxianos e semi-Darbouxianos. Depois estudamos a estabilidade das linhas principais fechadas e apresentamos também um resultado de genericidade do tipo Kupka-Smale. Na parte final, estudamos a estrutura dos pontos singulares das folheações principais na vizinhança de um ponto singular hiperbólico do campo de vetores .