Formação de grupos em MOOCs utilizando Particle Swarm Optimization

Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-01T10:57:51Z No. of bitstreams: 2 Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Ap...

Full description

Bibliographic Details
Main Author: Ullmann, Matheus Rudolfo Diedrich
Other Authors: Ferreira, Deller James
Format: Others
Language:Portuguese
Published: Universidade Federal de Goiás 2016
Subjects:
PSO
Online Access:http://repositorio.bc.ufg.br/tede/handle/tede/5609
id ndltd-IBICT-oai-repositorio.bc.ufg.br-tede-5609
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic MOOC
Cursos online
Massivos abertos
CSCL
Aprendizagem colaborativa
Aprendizagem a distância
PSO
Otimização porenxamedepartículas
Análise combinatória
Composição de grupos
Formaçãode grupos
MOOC
Massive open online courses
CSCL
Colaborative learning
Distance learning
PSO
Particle swarm optimization
Combinatorial analysis
Group composition
Group formation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
spellingShingle MOOC
Cursos online
Massivos abertos
CSCL
Aprendizagem colaborativa
Aprendizagem a distância
PSO
Otimização porenxamedepartículas
Análise combinatória
Composição de grupos
Formaçãode grupos
MOOC
Massive open online courses
CSCL
Colaborative learning
Distance learning
PSO
Particle swarm optimization
Combinatorial analysis
Group composition
Group formation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Ullmann, Matheus Rudolfo Diedrich
Formação de grupos em MOOCs utilizando Particle Swarm Optimization
description Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-01T10:57:51Z No. of bitstreams: 2 Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-01T11:00:53Z (GMT) No. of bitstreams: 2 Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Made available in DSpace on 2016-06-01T11:00:53Z (GMT). No. of bitstreams: 2 Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2016-02-26 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === The MassiveOpenOnlineCourses(MOOCs)areonlinecourseswithopenenrollment that involvingahugeamountofstudentsfromdifferentlocations,withdifferentback- grounds andinterests.Thelargenumberofstudentsimpliesahugeandunmanageable number ofinteractions.Thisfact,alongwiththedifferentinterestsofstudents,resulting in low-qualityinteractions.Duetothelargenumberofstudents,alsobecomesunviable composition manuallylearninggroups.DuetothesecharacteristicspresentinMOOCs, a methodforforminggroupswasdevelopedinthiswork,asanattempttoattendthedi- chotomy existsbetweenthecollective,whichinvolvestheformationofanonlinelearning community onamassivescale,andindividual,withdifferentinterests,priorknowledge and expectationsanddifferentleadershipprofiles.Fortheformationofgroups,anadapta- tion ofParticleSwarmOptimizationalgorithmwasproposedbasedonthreecriteria,kno- wledge level,interestsandleadershipprofiles,formingthengroupswithdifferentlevels of knowledge,similarinterestsanddistributedleadership,providingbetterinteractionand knowledgeconstruction.Werecreatedtwovariationsoftheproblem,withfivestudents and theothersix.Basedoncomputationaltests,thealgorithmdemonstratedthatableto attend thegroupingcriteriainasatisfactorycomputingtimeandismoreefficientthanthe model randomgroupsformation.Thetestsalsodemonstratedthatthealgorithmisrobust taking intoaccountthevariousdatasetsanditerationsvariations.Toevaluatethequality of interactionsandknowledgebuildingingroupsformedbythemethod,Acasestudy wasconducted;andfortheanalysisofthecollecteddiscourses,itwastakenasthebasis twomodelsofdiscourseanalysisfoundintheliterature.Theresultsofthecasestudy demonstrated thatthegroupsformedbytheproposedmethodachievedthebestresultsin the interactionsandknowledgeconstruction,whencomparedwithgroupsthatdonotuse it. === Os Massive OpenOnlineCourses (MOOCs) sãocursos online com inscriçõesabertas que envolvemumaenormequantidadedeestudantesdediferenteslocalidades,comdife- rentes backgrounds e interesses.Ograndenúmerodealunosimplicaemumaenormee não gerenciávelquantidadedeinterações.Estefato,juntamentecomosinteressesdife- rentes dosalunos,resultaeminteraçõesdebaixaqualidade.Devidoàgrandequantidade de alunos,tambémtorna-seinviávelacomposiçãodegruposdeaprendizagemdeforma manual. DevidoàessascaracterísticaspresentesnosMOOCs,ummétodoparaformação de gruposfoidesenvolvidonestetrabalho,comoumatentativaparaatenderadicoto- mia queexisteentreocoletivo,queenvolveaformaçãodeumacomunidade online de aprendizagem emumaescalamaciça,eoindividual,comdiferentesinteresses,conhe- cimentos prévioseexpectativasecomdiferentesperfisdeliderança.Paraaformação dos grupos,umaadaptaçãodoalgoritmo ParticleSwarmOptimization foi propostacom base emtrêscritérios,níveldeconhecimento,interesseseperfisdeliderança,formando então gruposcomníveisdeconhecimentodiferentes,interessessemelhanteseliderança distribuída,proporcionandoumamelhorinteraçãoeconstruçãodeconhecimento.Foram criadas duasvariaçõesdoproblema,umacomcincoalunoseoutracomseis.Combase em testescomputacionais,oalgoritmodemonstrouqueconsegueatenderoscritériosde agrupamento emumtempodecomputaçãosatisfatórioeémaiseficientequeomodelode formação degruposaleatório.Ostestesdemonstraramtambémqueoalgoritmoérobusto levandoemcontaosvariadosconjuntosdedadosevariaçõesdeiterações.Paraavaliara qualidade dasinteraçõeseaconstruçãodeconhecimentonosgruposformadospelomé- todo, umestudodecasofoirealizado;eparaaanálisedosdiscursoscoletados,tomou-se como basedoismodelosdeanálisedediscursopresentesnaliteratura.Oresultadodo estudo decasodemonstrouqueosgruposformadospelométodopropostoobtiveramos melhores resultadosnasinteraçõeseconstruçãodoconhecimento,quandocomparados com osgruposquenãooutilizaram.
author2 Ferreira, Deller James
author_facet Ferreira, Deller James
Ullmann, Matheus Rudolfo Diedrich
author Ullmann, Matheus Rudolfo Diedrich
author_sort Ullmann, Matheus Rudolfo Diedrich
title Formação de grupos em MOOCs utilizando Particle Swarm Optimization
title_short Formação de grupos em MOOCs utilizando Particle Swarm Optimization
title_full Formação de grupos em MOOCs utilizando Particle Swarm Optimization
title_fullStr Formação de grupos em MOOCs utilizando Particle Swarm Optimization
title_full_unstemmed Formação de grupos em MOOCs utilizando Particle Swarm Optimization
title_sort formação de grupos em moocs utilizando particle swarm optimization
publisher Universidade Federal de Goiás
publishDate 2016
url http://repositorio.bc.ufg.br/tede/handle/tede/5609
work_keys_str_mv AT ullmannmatheusrudolfodiedrich formacaodegruposemmoocsutilizandoparticleswarmoptimization
AT ullmannmatheusrudolfodiedrich formingofgroupsinmoocsusingparticleswarmoptimization
_version_ 1718896615627948032
spelling ndltd-IBICT-oai-repositorio.bc.ufg.br-tede-56092019-01-21T22:38:35Z Formação de grupos em MOOCs utilizando Particle Swarm Optimization Forming of groups in MOOCs using Particle Swarm Optimization Ullmann, Matheus Rudolfo Diedrich Ferreira, Deller James Camilo Júnior, Celso Gonçalves Ferreira, Deller James Camilo Júnior, Celso Gonçalves Marques, Fátima de Lourdes dos Santos Nunes Carvalho, Cedric Luiz de MOOC Cursos online Massivos abertos CSCL Aprendizagem colaborativa Aprendizagem a distância PSO Otimização porenxamedepartículas Análise combinatória Composição de grupos Formaçãode grupos MOOC Massive open online courses CSCL Colaborative learning Distance learning PSO Particle swarm optimization Combinatorial analysis Group composition Group formation CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-01T10:57:51Z No. of bitstreams: 2 Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-01T11:00:53Z (GMT) No. of bitstreams: 2 Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Made available in DSpace on 2016-06-01T11:00:53Z (GMT). No. of bitstreams: 2 Dissertação - Matheus Rudolfo Diedrich Ullmann - 2016.pdf: 1264745 bytes, checksum: 65f8378224bd7fd700216a920f2da7a0 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2016-02-26 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES The MassiveOpenOnlineCourses(MOOCs)areonlinecourseswithopenenrollment that involvingahugeamountofstudentsfromdifferentlocations,withdifferentback- grounds andinterests.Thelargenumberofstudentsimpliesahugeandunmanageable number ofinteractions.Thisfact,alongwiththedifferentinterestsofstudents,resulting in low-qualityinteractions.Duetothelargenumberofstudents,alsobecomesunviable composition manuallylearninggroups.DuetothesecharacteristicspresentinMOOCs, a methodforforminggroupswasdevelopedinthiswork,asanattempttoattendthedi- chotomy existsbetweenthecollective,whichinvolvestheformationofanonlinelearning community onamassivescale,andindividual,withdifferentinterests,priorknowledge and expectationsanddifferentleadershipprofiles.Fortheformationofgroups,anadapta- tion ofParticleSwarmOptimizationalgorithmwasproposedbasedonthreecriteria,kno- wledge level,interestsandleadershipprofiles,formingthengroupswithdifferentlevels of knowledge,similarinterestsanddistributedleadership,providingbetterinteractionand knowledgeconstruction.Werecreatedtwovariationsoftheproblem,withfivestudents and theothersix.Basedoncomputationaltests,thealgorithmdemonstratedthatableto attend thegroupingcriteriainasatisfactorycomputingtimeandismoreefficientthanthe model randomgroupsformation.Thetestsalsodemonstratedthatthealgorithmisrobust taking intoaccountthevariousdatasetsanditerationsvariations.Toevaluatethequality of interactionsandknowledgebuildingingroupsformedbythemethod,Acasestudy wasconducted;andfortheanalysisofthecollecteddiscourses,itwastakenasthebasis twomodelsofdiscourseanalysisfoundintheliterature.Theresultsofthecasestudy demonstrated thatthegroupsformedbytheproposedmethodachievedthebestresultsin the interactionsandknowledgeconstruction,whencomparedwithgroupsthatdonotuse it. Os Massive OpenOnlineCourses (MOOCs) sãocursos online com inscriçõesabertas que envolvemumaenormequantidadedeestudantesdediferenteslocalidades,comdife- rentes backgrounds e interesses.Ograndenúmerodealunosimplicaemumaenormee não gerenciávelquantidadedeinterações.Estefato,juntamentecomosinteressesdife- rentes dosalunos,resultaeminteraçõesdebaixaqualidade.Devidoàgrandequantidade de alunos,tambémtorna-seinviávelacomposiçãodegruposdeaprendizagemdeforma manual. DevidoàessascaracterísticaspresentesnosMOOCs,ummétodoparaformação de gruposfoidesenvolvidonestetrabalho,comoumatentativaparaatenderadicoto- mia queexisteentreocoletivo,queenvolveaformaçãodeumacomunidade online de aprendizagem emumaescalamaciça,eoindividual,comdiferentesinteresses,conhe- cimentos prévioseexpectativasecomdiferentesperfisdeliderança.Paraaformação dos grupos,umaadaptaçãodoalgoritmo ParticleSwarmOptimization foi propostacom base emtrêscritérios,níveldeconhecimento,interesseseperfisdeliderança,formando então gruposcomníveisdeconhecimentodiferentes,interessessemelhanteseliderança distribuída,proporcionandoumamelhorinteraçãoeconstruçãodeconhecimento.Foram criadas duasvariaçõesdoproblema,umacomcincoalunoseoutracomseis.Combase em testescomputacionais,oalgoritmodemonstrouqueconsegueatenderoscritériosde agrupamento emumtempodecomputaçãosatisfatórioeémaiseficientequeomodelode formação degruposaleatório.Ostestesdemonstraramtambémqueoalgoritmoérobusto levandoemcontaosvariadosconjuntosdedadosevariaçõesdeiterações.Paraavaliara qualidade dasinteraçõeseaconstruçãodeconhecimentonosgruposformadospelomé- todo, umestudodecasofoirealizado;eparaaanálisedosdiscursoscoletados,tomou-se como basedoismodelosdeanálisedediscursopresentesnaliteratura.Oresultadodo estudo decasodemonstrouqueosgruposformadospelométodopropostoobtiveramos melhores resultadosnasinteraçõeseconstruçãodoconhecimento,quandocomparados com osgruposquenãooutilizaram. 2016-06-01T11:00:53Z 2016-02-26 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis ULLMANN, M. R. D. Formação de grupos em MOOCs utilizando Particle Swarm Optimization. 2016. 99 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5609 por -3303550325223384799 600 600 600 600 -7712266734633644768 3671711205811204509 2075167498588264571 http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess application/pdf Universidade Federal de Goiás Programa de Pós-graduação em Ciência da Computação (INF) UFG Brasil Instituto de Informática - INF (RG) reponame:Biblioteca Digital de Teses e Dissertações da UFG instname:Universidade Federal de Goiás instacron:UFG