Método automático para descoberta de funções de ordenação utilizando programação genética paralela em GPU

Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-15T13:33:06Z No. of bitstreams: 2 Dissertação - André Rodrigues Coimbra - 2014.pdf: 5214859 bytes, checksum: d951502129d7be5d60b6a785516c3ad1 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Approved fo...

Full description

Bibliographic Details
Main Author: Coimbra, Andre Rodrigues
Other Authors: Martins, Wellington Santos
Format: Others
Language:Portuguese
Published: Universidade Federal de Goiás 2015
Subjects:
Online Access:http://repositorio.bc.ufg.br/tede/handle/tede/4525
Description
Summary:Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-15T13:33:06Z No. of bitstreams: 2 Dissertação - André Rodrigues Coimbra - 2014.pdf: 5214859 bytes, checksum: d951502129d7be5d60b6a785516c3ad1 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-15T13:37:45Z (GMT) No. of bitstreams: 2 Dissertação - André Rodrigues Coimbra - 2014.pdf: 5214859 bytes, checksum: d951502129d7be5d60b6a785516c3ad1 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Made available in DSpace on 2015-05-15T13:37:45Z (GMT). No. of bitstreams: 2 Dissertação - André Rodrigues Coimbra - 2014.pdf: 5214859 bytes, checksum: d951502129d7be5d60b6a785516c3ad1 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-03-28 === Ranking functions have a vital role in the performance of information retrieval systems ensuring that documents more related to the user’s search need – represented as a query – are shown in the top results, preventing the user from having to examine a range of documents that are not really relevant. Therefore, this work uses Genetic Programming (GP), an Evolutionary Computation technique, to find ranking functions automaticaly and systematicaly. Moreover, in this project the technique of GP was developed following a strategy that exploits parallelism through graphics processing units. Other known methods in the context of information retrieval as classification committees and the Lazy strategy were combined with the proposed approach – called Finch. These combinations were only feasible due to the GP nature and the use of parallelism. The experimental results with the Finch, regarding the ranking functions quality, surpassed the results of several strategies known in the literature. Considering the time performance, significant gains were also achieved. The solution developed exploiting the parallelism spends around twenty times less time than the solution using only the central processing unit. === Funções de ordenação têm um papel vital no desempenho de sistemas de recuperação de informação garantindo que os documentos mais relacionados com o desejo do usuário – representado através de uma consulta – sejam trazidos no topo dos resultados, evitando que o usuário tenha que analisar uma série de documentos que não sejam realmente relevantes. Assim, utiliza-se a Programação Genética (PG), uma técnica da Computação Evolucionária, para descobrir de forma automática e sistemática funções de ordenação. Além disso, neste trabalho a técnica de PG foi desenvolvida seguindo uma estratégia que explora o paralelismo através de unidades gráficas de processamento. Foram agregados ainda na abordagem proposta – denominada Finch – outros métodos conhecidos no contexto de recuperação de informação como os comitês de classificação e a estratégia Lazy. Sendo que essa complementação só foi viável devido a natureza da PG e em virtude da utilização do paralelismo. Os resultados experimentais encontrados com a Finch, em relação à qualidade das funções de ordenação descobertas, superaram os resultados de diversas estratégias conhecidas na literatura. Considerando o desempenho da abordagem em função do tempo, também foram alcançados ganhos significativos. A solução desenvolvida explorando o paralelismo gasta, em média, vinte vezes menos tempo que a solução utilizando somente a unidade central de processamento.