O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T21:10:33Z No. of bitstreams: 2 Caetano, Samuel Sabino-2013-dissertação.pdf: 1031464 bytes, checksum: 39f6a5947aed90b8f7c8e56b76d93e5a (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Approved for entry...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal de Goiás
2014
|
Subjects: | |
Online Access: | http://repositorio.bc.ufg.br/tede/handle/tede/3195 |
id |
ndltd-IBICT-oai-repositorio.bc.ufg.br-tede-3195 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Algoritmos Genéticos Híbridos CSCL CSCW CSCL@Work Meta-Heurística Heurística Formação de grupos Criação do conhecimento organizacional Algoritmos genéticos Hybrid genetic algorithms MetaHeuristics Heuristic Groups formation Organizational knowledge creation Genetic algorithms TEORIA DA COMPUTACAO::ANALISE DE ALGORITMOS E COMPLEXIDADE DE COMPUTACAO |
spellingShingle |
Algoritmos Genéticos Híbridos CSCL CSCW CSCL@Work Meta-Heurística Heurística Formação de grupos Criação do conhecimento organizacional Algoritmos genéticos Hybrid genetic algorithms MetaHeuristics Heuristic Groups formation Organizational knowledge creation Genetic algorithms TEORIA DA COMPUTACAO::ANALISE DE ALGORITMOS E COMPLEXIDADE DE COMPUTACAO Caetano, Samuel Sabino O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo |
description |
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T21:10:33Z
No. of bitstreams: 2
Caetano, Samuel Sabino-2013-dissertação.pdf: 1031464 bytes, checksum: 39f6a5947aed90b8f7c8e56b76d93e5a (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T21:12:31Z (GMT) No. of bitstreams: 2
Caetano, Samuel Sabino-2013-dissertação.pdf: 1031464 bytes, checksum: 39f6a5947aed90b8f7c8e56b76d93e5a (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Made available in DSpace on 2014-09-26T21:12:31Z (GMT). No. of bitstreams: 2
Caetano, Samuel Sabino-2013-dissertação.pdf: 1031464 bytes, checksum: 39f6a5947aed90b8f7c8e56b76d93e5a (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-09-09 === Increasingly, learning in groups has become present in school environments. This fact is
also part of the organizations, when considers learning in the workplace. Conscious of the
importance of group learning at the workplace (CSCL@Work) emerges as an application
area. In Computer Supported Collaborative Learning(CSCL), researchers have been
struggling to maximize the performance of groups by techniques for forming groups.
Is that why this study developed three (3) algorithmic approaches to formation of intraheterogeneous
and inter-homogeneous groups, as well as a model proposed in this work
in which integrates dichotomous functional characteristics and preferred roles. We made
an algorithm that generates random groups, a Canonical Genetic Algorithm and Hybrid
Genetic Algorithm. We obtained the input data of the algorithm by a survey conducted
at the Court of the State of Goiás to identify dichotomous functional characteristics, and
after we categorize these characteristics, based on the data found and the model proposed
group formation. Starting at real data provided of employees whom participated in a
course by Distance Education (EaD), we apply the model and we obtained the input
data related to functional features. As regards the favorite roles, we assigned randomly
values to the employees aforementioned, from a statistical statement made by Belbin into
companies in the United Kingdom. Then, we executed the algorithms in three test cases,
one considering the preferred papers and functional characteristics, while the other two
separately considering each of these perspectives. Based on the results obtained, we found
that the hybrid genetic algorithm outperforms the canonical genetic algorithm and random
generator. === A aprendizagem em grupos tem se tornado realidade cada vez mais presente nos ambientes
de ensino. Esta realidade também faz parte das organizações quando considera-se
a aprendizagem no contexto do trabalho. Cientes da importância da aprendizagem em
grupo no ambiente de trabalho, uma nova abordagem, denominada CSCL@Work, surge
como uma aplicação da área Aprendizagem Colaborativa Apoiada pelo Computador, no
inglês, Computer Supported Collaborative Learning (CSCL), no ambiente de trabalho.
Em CSCL, pesquisadores tem se esforçado cada vez mais para maximizar o desempenho
dos grupos através de técnicas para formação de grupos. Por isso neste trabalho desenvolvemos
3 (três) abordagens algorítmicas para formação de grupos intra-heterogêneos e
inter-homogêneos, a partir de um modelo proposto nesta pesquisa, que integra características
funcionais dicotômicas e papéis preferidos. Confeccionamos um algoritmo que gera
grupos aleatoriamente, um algoritmo genético canônico e um algoritmo genético híbrido.
Para obter os dados de entrada do algoritmo, realizamos uma pesquisa no Tribunal de
Justiça do Estado de Goiás para identificar características funcionais dicotômicas, categorizamos
estas características, com base nos dados encontrados e no modelo de formação
de grupos proposto. A partir de dados reais fornecidos de funcionários que participaram de
um curso por Educação a Distância (EaD), aplicamos o modelo e obtivemos os dados de
entrada relativos às características funcionais. Quanto aos papéis preferidos, atribuímos
os valores aleatoriamente aos funcionários mencionados, partindo de um levantamento
estatístico feito por Belbin em empresas no Reino Unido. Em seguida, executamos os algoritmos
em três casos de testes, um considerando as características funcionais e papéis
preferidos, e os outros dois considerando separadamente cada uma destas perspectivas. A
partir dos resultados obtidos, constatamos que o algoritmo genético híbrido obtém resultados
superiores ao algoritmo genético canônico e método aleatório. |
author2 |
Ferreira, Deller James |
author_facet |
Ferreira, Deller James Caetano, Samuel Sabino |
author |
Caetano, Samuel Sabino |
author_sort |
Caetano, Samuel Sabino |
title |
O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo |
title_short |
O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo |
title_full |
O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo |
title_fullStr |
O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo |
title_full_unstemmed |
O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo |
title_sort |
o uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo |
publisher |
Universidade Federal de Goiás |
publishDate |
2014 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/3195 |
work_keys_str_mv |
AT caetanosamuelsabino ousodealgoritmosevolutivosparaaformacaodegruposnaaprendizagemcolaborativanocontextocorporativo AT caetanosamuelsabino theapplicationofevolutionaryalgorithmsforgroupformationincollaborativelearningatworkplace |
_version_ |
1718893880674353152 |
spelling |
ndltd-IBICT-oai-repositorio.bc.ufg.br-tede-31952019-01-21T22:23:30Z O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo The application of evolutionary algorithms for group formation in collaborative learning at workplace Caetano, Samuel Sabino Ferreira, Deller James Camilo Junior, Celso Gonçalves Soares, Telma Woerle de Lima Martinhon, Carlos Alberto de Jesus Algoritmos Genéticos Híbridos CSCL CSCW CSCL@Work Meta-Heurística Heurística Formação de grupos Criação do conhecimento organizacional Algoritmos genéticos Hybrid genetic algorithms MetaHeuristics Heuristic Groups formation Organizational knowledge creation Genetic algorithms TEORIA DA COMPUTACAO::ANALISE DE ALGORITMOS E COMPLEXIDADE DE COMPUTACAO Submitted by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T21:10:33Z No. of bitstreams: 2 Caetano, Samuel Sabino-2013-dissertação.pdf: 1031464 bytes, checksum: 39f6a5947aed90b8f7c8e56b76d93e5a (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T21:12:31Z (GMT) No. of bitstreams: 2 Caetano, Samuel Sabino-2013-dissertação.pdf: 1031464 bytes, checksum: 39f6a5947aed90b8f7c8e56b76d93e5a (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Made available in DSpace on 2014-09-26T21:12:31Z (GMT). No. of bitstreams: 2 Caetano, Samuel Sabino-2013-dissertação.pdf: 1031464 bytes, checksum: 39f6a5947aed90b8f7c8e56b76d93e5a (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-09-09 Increasingly, learning in groups has become present in school environments. This fact is also part of the organizations, when considers learning in the workplace. Conscious of the importance of group learning at the workplace (CSCL@Work) emerges as an application area. In Computer Supported Collaborative Learning(CSCL), researchers have been struggling to maximize the performance of groups by techniques for forming groups. Is that why this study developed three (3) algorithmic approaches to formation of intraheterogeneous and inter-homogeneous groups, as well as a model proposed in this work in which integrates dichotomous functional characteristics and preferred roles. We made an algorithm that generates random groups, a Canonical Genetic Algorithm and Hybrid Genetic Algorithm. We obtained the input data of the algorithm by a survey conducted at the Court of the State of Goiás to identify dichotomous functional characteristics, and after we categorize these characteristics, based on the data found and the model proposed group formation. Starting at real data provided of employees whom participated in a course by Distance Education (EaD), we apply the model and we obtained the input data related to functional features. As regards the favorite roles, we assigned randomly values to the employees aforementioned, from a statistical statement made by Belbin into companies in the United Kingdom. Then, we executed the algorithms in three test cases, one considering the preferred papers and functional characteristics, while the other two separately considering each of these perspectives. Based on the results obtained, we found that the hybrid genetic algorithm outperforms the canonical genetic algorithm and random generator. A aprendizagem em grupos tem se tornado realidade cada vez mais presente nos ambientes de ensino. Esta realidade também faz parte das organizações quando considera-se a aprendizagem no contexto do trabalho. Cientes da importância da aprendizagem em grupo no ambiente de trabalho, uma nova abordagem, denominada CSCL@Work, surge como uma aplicação da área Aprendizagem Colaborativa Apoiada pelo Computador, no inglês, Computer Supported Collaborative Learning (CSCL), no ambiente de trabalho. Em CSCL, pesquisadores tem se esforçado cada vez mais para maximizar o desempenho dos grupos através de técnicas para formação de grupos. Por isso neste trabalho desenvolvemos 3 (três) abordagens algorítmicas para formação de grupos intra-heterogêneos e inter-homogêneos, a partir de um modelo proposto nesta pesquisa, que integra características funcionais dicotômicas e papéis preferidos. Confeccionamos um algoritmo que gera grupos aleatoriamente, um algoritmo genético canônico e um algoritmo genético híbrido. Para obter os dados de entrada do algoritmo, realizamos uma pesquisa no Tribunal de Justiça do Estado de Goiás para identificar características funcionais dicotômicas, categorizamos estas características, com base nos dados encontrados e no modelo de formação de grupos proposto. A partir de dados reais fornecidos de funcionários que participaram de um curso por Educação a Distância (EaD), aplicamos o modelo e obtivemos os dados de entrada relativos às características funcionais. Quanto aos papéis preferidos, atribuímos os valores aleatoriamente aos funcionários mencionados, partindo de um levantamento estatístico feito por Belbin em empresas no Reino Unido. Em seguida, executamos os algoritmos em três casos de testes, um considerando as características funcionais e papéis preferidos, e os outros dois considerando separadamente cada uma destas perspectivas. A partir dos resultados obtidos, constatamos que o algoritmo genético híbrido obtém resultados superiores ao algoritmo genético canônico e método aleatório. 2014-09-26T21:12:31Z 2013-09-09 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis CAETANO, Samuel Sabino. O uso de algoritmos evolutivos para a formação de grupos na aprendizagem colaborativa no contexto corporativo. 2013. 149 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia. 2013 http://repositorio.bc.ufg.br/tede/handle/tede/3195 por -3303550325223384799 600 600 600 -7712266734633644768 437660438475277419 [1] ABDOLLAH HOMAIFAR, C. X. Q.; LAI, S. H. Constrained optimization via genetic algorithms. SIMULATION, 62(4):242–254, 1994. [2] ABNAR, S.; OROOJI, F.; TAGHIYAREH, F. An evolutionary algorithm for forming mixed groups of learners in web based collaborative learning environments. In: Technology Enhanced Education (ICTEE), 2012 IEEE International Conference on, p. 1–6, 2012. [3] ADAMIDES, E. D.; KARACAPILIDIS, N. Information technology support for the knowledge and social processes of innovation management. Technovation, 26:50–59, 2006. [4] AGGARWAL, A. Functional diversity and its impact on distributed groups: An exploratory study. In: Proceedings of the 2012 45th Hawaii International Conference on System Sciences, HICSS ’12, p. 444–453, Washington, DC, USA, 2012. IEEE Computer Society. [5] AGGARWAL, A. K. Diversity in distributed decision making: An exploratory study. In: Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, HICSS ’10, p. 1–11,Washington, DC, USA, 2010. IEEE Computer Society. [6] AGHA, S.; ALRUBAIEE, L.; JAMHOUR, M. Effect of core competence on competitive advantage and organizational performance. International Journal of Business and Management, 7(1):192–204, Janeiro 2012. [7] ANDERSON, W.; HILTZ, S. Culturally heterogeneous vs. culturally homogeneous grupos in distributed group support systems: effects on group process and consensus. In: 34th International Conference on Systems Sciences, 2001. [8] ANNE POWELL, GABRIELE PICCOLI, B. I. Virtual teams: A review of current literature and directions for future research. The data base for Advances in Information Systems, 35(1):6–36, 2004. [9] APPELBAUM, S. H.; GALLAGHER, J. The competitive advantage of organizational learning. Journal of Workplace Learning: Employee Counselling Today, 12(2):40–56, 2000. [10] ARAGON, C. R.; WILLIAMS, A. Collaborative creativity: a complex systems model with distributed affect. In: CHI ’11 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, p. 1875–1884, 2011. [11] ASOH, H.; MÜHLENBEIN, H. On the mean convergence time of evolutionary algorithms without selection and mutation. In: PARALLEL PROBLEM SOLVING FROM NATURE, LECTURE NOTES IN COMPUTER SCIENCE 866, p. 88–97. Springer-Verlag, 1994. [12] AVOLIO, B. Full Leadership Development: Building the Vital Forces in Organizations. Advanced Topics in Organizational Behavior series. SAGE Publications, 1999. [13] BANDURA, A. Social foundations of thought and action: a social cognitive theory. Prentice-Hall series in social learning theory. Prentice-Hall, 1986. [14] BANI-HANI, J. S.; FALEH, A. A. The impact of core competencies on competitive advantage: Strategic challenge. Journal of Business and Management, 4(2), 2011. [15] BARDIN, L. Análise de conteúdo. Edições 70, 2006. Título original: L’analyse de contenu, Presses Universitaires de France, 1977. [16] BARNATT, C. Virtual organizations in the small busciness sector: the case of cavendish management resources. International Small Business Journal, 15(4):36–47, 1997. [17] BASADUR, M.; HEAD, M. Team performance and satisfaction: A link to cognitive style within a process framework. Journal of Creative Behavior, 35:227–248, 2001. [18] BASS, B. Transformational Leadership: Industrial, Military, and Educational Impact. Lawrence Erlbaum Associates, Incorporated, 1998. [19] BASS, B.; AVOLIO, B. Improving Organizational Effectiveness Through Transformational Leadership. Thousands Oaks, California, 1994. [20] BATTITI, R.; BRUNATO, M.; MASCIA, F. Reactive search and intelligent optimization. Technical report, Università Degli Studi di Trento, Julho 2007. [21] BEKELE, R. Computer-Assisted Learner Group Formation Based on Personality Traits. PhD thesis, Universität Hamburg, 2005. [22] BELBIN, M. Team Roles at Work. Oxford: Butterworth Heinemann, 1993. [23] BELBIN, R. Management Teams: Why They Succeed Or Fail. Butterworth- Heinemann, 1981. [24] BELEW, R. K. Evolving networks: Using the genetic algorithm with connectionist learning. Technical report, University of California, La Jolla, CA 92093, Junho 1990. [25] BERGER, N. Pionnering experiences in distance learning: Lessons learned. Journal of Management Education, 23(6):684–690, 1999. [26] BERTTUCCI, A.; MELONI, C.; CONTE, S.; CARDELLINI, L. The role of personality gender and interaction in a cooperative and a computer supported collaborative learning task. Journal of Science Education, 6:32–36, 2005. [27] BRADLEY, J. H.; HEBERT, F. J. The effect of personality type on team performance. Journal of Management Development, 16:337–353, 1997. [28] BRANDON, D.; HOLLINGSHEAD, A. Collaborative learning and computer supported groups. Communication Education, 48(2):109–126, 1999. [29] BRASIL. Constituição da república federativa do brasil. Internet. http://www.planalto.gov.br/ccivil_03/Constituicao/Constituicao.htm, acesso em 14/07/2013. [30] BROPHY, D. Understanding, measuring, and enhancing collective creative problem-solving efforts. Creative Research Journal, 3:199–299, 1998. [31] BROWN, A.; CAMPIONE, J. Guided discovery in a community of learners. In: Press, C. M., editor, Classroom lessons: Integrating cognitive theory and classroom practice, p. 229–270. Classroom lessons: Integrating cognitive theory and classroom practice, 1994. [32] BROWN, S.; EISENHARDT, K. Product development: past research; present findings, and future directions. Academy of Management Review, 20:343–378, 1995. [33] BUNDERSON, J. S.; SUTCLIFFE, K. Comparing alternative conceptualizatios of funcional diversity and performance effects. Academy of Management Journal, 45 (5):875–893., 2002. [34] CAETANO, S. S.; FERREIRA, D. J.; CAMILO-JR, C. G. Multi-objective genetic algorithm for competency-based selection of auditing teams. Journal of Software & Systems Development, 2013(2013), 2013. [35] CANNON, D.; WHEELDON, D. ITIL Service Operation. TSO, May 2007. [36] CARSON, J. B.; TESLUK, P. E.; MARRONE, J. A. Shared leadership in teams: An investigation of antecedent conditions and performance. Academy of Management Journal, 50(5):1217–1234, 2007. [37] CARTE, T. A.; CHIDAMBARAM, L.; BECKER, A. Emergent leadership in selfmanaged virtual teams: A longitudinal study of concentrated and shared leadership behaviors. Group Decision and Negotiation, 15(4):323–343, 2006. [38] CAVANAUGH, R.; ELLIS, M.; LAYTON, R.; ARDIS, M. Automating the process of assigning students to cooperative-learning teams. In: in proc. 2004 ASEE Annual Conf, 2004. [39] CHAN, K. W. Issues of heterogeneous grouping for engaged learning. In: APERA Conference 2006, 2006. [40] CHIDAMBARAM, L.; CARTE, T. Diversity: Is there more than meets the eye. In: The 38th International Conference on System Science, 2005. [41] CHRISTODOULOPOULOS, C. E.; PAPANIKOLAOU, K. A. Investigation of group formation using low complexity algorithms. In: Proceedings of Workshop on Personalisation in E-Learning Environments at Individual and Group Level, p. 57– 60, 2007. 1th International Conference on User Modeling. [42] CONGER, J. A., K. R. A. Towards a behavioral theory of charismatic leadership in organizational settings. Academy of Management Review, 12:637–647, 1987. [43] COX, T. The multicultural organization. Academy of Management Executive, 5:34–47, 1991. [44] COX, T.; BLAKE, S. Managing cultural diversity: Implications for organizational competitiveness. Academy of Management Executive, 5:45–56, 1991. [45] DARWIN, C. On the Origin of the Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life. John Murray, 1859. [46] DAVIDSON, N.; KROLL, D. L. An overview of research on cooperative learning related to mathematic. Journal for Research in Mathematics Education, 22:362– 365, 1991. [47] DE GEUS, A. The living company. Harvard Business School Press, 1997. [48] DE PAIVA, I. A.; PERNAMBUCO, M. M. C. A. Educação e realidade: interdisciplinar. Universidade Federal do Rio Grande do Norte, 2005. [49] DEB, K. An efficient constraint handling method for genetic algorithms. In: Computer Methods in Applied Mechanics and Engineering, p. 311–338, 1998. [50] DILLENBOURG, P. Over-scripting cscl: The risks of blending collaborative learning with instructional design. http://hal.archivesouvertes. fr/docs/00/19/02/30/PDF/Dillenbourg-Pierre-2002.pdf, acesso em 14.05.2013. [51] DILLENBOURG, P. What do you mean by ’collaborative learning’? Collaborativelearning: Cognitive and Computational Approaches., 1999. [52] DOWLING, K.; CHIM, T. Reflectors as online extraverts. Educational Studies, 30(06):265–276, 2004. [53] DRUCKER, P. Post-Capitalism Society. Butterworth Heinemann, 1993. [54] EBRAHIM, N. A.; AHMED, S.; TAHA., Z. Virtual teams: a literature review. Australian Journal of Basic and Applied Sciences, 3(3):2653–2669, 2009. [55] EIBEN, A. E.; SMITH, J. E. Introduction to Evolutionary Computing. Natural Computing Series. Springer, 2003. [56] EIBEN, A.; RAUÉ, P.-E.; RUTTKAY, Z. Ga-easy and ga-hard constraint satisfaction problems, 1995. [57] EL-MIHOUB, T. A.; HOPGOOD, A. A.; NOLLE, L.; BATTERSBY, A. Hybrid genetic algorithms: A review. Engineering Letters, 13(2), 2006. [58] ENGELBRECHT, A. P. Computational intelligence : an introduction. John Wiley & Sons, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2nd edition edition, 2007. [59] FELDER, R. M.; SILVERMAN, L., K. Learning and teaching styles in engineering education. Engr. Education, 78:674–681, 1988. Disponível em http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/LS-1988.pdf, acesso em 28/12/2012. [60] FELDER, R. M. How students learn: Adapting teaching styles to learning styles. In: Frontiers In Education Conference Proceedings, p. 489–493, 1988. [61] FELIX, Z.; TEDESCO, P. Formação de grupos de aprendizagem em ambientes cscl ciente de contexto. II SEGeT – Simpósio de Excelência em Gestão e Tecnologia, 2006. [62] FILHO, J. A. B. L.; QUARTO, C. C.; FRANCA, R. M. Clustering algorithm for the socio-affective groups formation in aid of computer supported collaborative learning. Sistemas Colaborativos II, Simpósio Brasilerio de, 0:24–27, 2010. [63] FISCHER, G. A conceptual framework for computer-supported collaborative learning at work. In: Goggins, S. P.; Jahnke, I.; Wulf, V., editors, Computer- Supported Collaborative Learning at the Workplace, volume 14 de Computer- Supported Collaborative Learning Series, p. 23–42. Springer US, 2013. [64] FORSYTH, D. Group Dynamics. Psychology Series. Brooks/Cole, Wadsworth, 1999. [65] FREED, S. Pensar, dialogar e aprender. http://www.andrews.edu/ freed/ppdfs/4- 10InterdependenciaPositiva.pdf, acesso em 17.02.2013. [66] GOGGINS, S.; JAHNKE, I.; WULF, V. Cscl@work revisited - beyond cscl and cscw?: are there key design principles for computer supported collaborative learning at the workplace? In: Proceedings of the 17th ACM international conference on Supporting group work, GROUP ’12, p. 323–326, New York, NY, USA, 2012. ACM. [67] GOGGINS, S. P.; JAHNKE, I. Cscl@work: Making learning visible in unexpected online places across established boundaries. IJSKD, 4(3):17–37, 2012. [68] GOIÁS, E. Lei no 17.663, de 14 de junho de 2012. Internet, 06 2012. Dispõe sobre a reestruturação da Carreira dos Servidores do Poder Judiciário do Estado de Goiás e dá outras providências. [69] GRAF, S.; BEKELE, R. Forming heterogeneous groups for intelligent collaborative learning systems with ant colony optimization. In: Springer-Verlag Berlin, H., editor, ITS’06 Proceedings of the 8th international conference on Intelligent Tutoring Systems, p. 217–226, 2006. [70] GRANT, R. Toward a knoledge-based theory of firm. Strategic Management Journal, 17:109–122, 1996. [71] GRUAU, F.; WHITLEY, D. Adding learning to the cellular development of neural networks: Evolution and the baldwin effect. Evol. Comput., 1(3):213–233, Sept. 1993. [72] GRUDIN, J. Computer-supported cooperative work: history and focus. Computer, 27(5):19–26, 1994. [73] GRUNERT, K. G.; HILDEBRANDT, L. Success factors, competitive advantage and competence development. Journal of Business Research, 57(5):459 – 461, 2004. <ce:title>Success factors, competitive advantage and competence development</ce:title>. [74] GUIMERÀ, R.; UZZI2, B.; SPIRO, J.; AMARAL1, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722):697–702, April 2005. [75] GUZZO, R.; DICKSON, M. Teams in organizations: Recent research on performance and effectiveness. Annual Review of Psychology, 47:307–338, 1996. [76] HAKKINEN, P. What makes learning and understanding in virtual teams so difficult? CyberPsychology & Behavior, 7(2):201–206, 2004. [77] HARE, A. P. Types of roles in small groups : A bit of history and a current perspective. Small Group Research, 25:433–448, 1994. [78] HARRINGTON, D.; KEARNEY, A. The business school in transition: New opportunities in management development, knowledge transfer and knowledge creation. Journal of European Industrial Training, 35(2):116–134, 2011. [79] HARRISON, D.; PRICE, K.; GAVIN, J.; FLOREY, A. Time, teams and task performance: Changing effects of surface and deep-level diversity on group functioning. Academy of Management Journal, 45(5):1029–1045, 2002. [80] HART, W. E. Adaptive global optimization with local search. PhD thesis, La Jolla, CA, USA, 1994. UMI Order No. GAX94-32928. [81] HAUPT, R.; HAUPT, S. Practical Genetic Algorithms. Wiley, 2nd edition, 2004. [82] HENRY, S. M.; STEVENS, K. T. Using belbin’s leadership role to improve team effectiveness: an empirical investigation. J. Syst. Softw., 44(3):241–250, Jan. 1999. [83] HOADLEY, C. Roles, design, and the nature of cscl. Computers in Human Behavior, 26(4):551–555, Julho 2010. Elsevier Science Publishers B. V. Amsterdam, The Netherlands, The Netherlands. [84] HOLLAND, J. H. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975. [85] HOUSE, R. J.; SHAMIR, B. Toward the integration of transformational, charismatic, and visionary theories. In: Press, U. A., editor, Leadership theory and research: Perspectives and directions, p. 81–107. M. M. Chemers and R. Ayman, San Diego, CA, 1993. [86] HOWELL, J.; AVOLIO, B. J. Transformational leadership, transactional leadership, locus of control and support for innovation: Key predictors of consolidated-business unit performance. Journal of Applied Psychology, 78:891–902, 1993. [87] HUBSCHER, R. Assigning students to groups using general and contextspecific criteria. IEEE Trans. Learn. Technol., 3(3):178–189, July 2010. [88] JANIS, I. Group Think. 1971. [89] JARKE, M. Experience-based knowledge management:a cooperative information systems perspective. Control Engineering Practice, 10:561–569, 2002. [90] JARVENPAA, S. L.; LEIDNER, D. E. Communication and trust in global virtual teams. Organization Science, 10(6):791–815, June 1999. [91] JIN, N.; TSANG, E.; LI, J. A constraint-guided method with evolutionary algorithms for economic problems. Appl. Soft Comput., 9(3):924–935, June 2009. [92] JOHNSON, D. W.; JOHNSON, R. Learning together and alone: Cooperation, competition and individualistic learning. Prentice Hall, 1987. [93] JOHNSON, D. W.; JOHNSON, R. T. Making cooperative learning work. Theory Into Practice, 38(2):67–73, 1999. [94] JOHNSON, D. W.; JOHNSON, R. T.; STANNE, M. B. Impact of group processing on achievement in cooperative groups. The journal of Social Psycology, 130(4):507– 516, 2001. [95] JOHNSON, D.; JOHNSON, R. Creative controversy: intellectual challenge in the classroom. Interaction Book Company, 1995. [96] JOHNSON, R. T.; JOHNSON, D. W. An overview of cooperative learning. http://teachers.henrico.k12.va.us/staffdev/mcdonald_j/downloads/21st/comm/BenefitsOfCL/OverviewOfCoopLrng_acesso em 27.12.2012. [97] JÄRVELÄ, S.; JÄRVENOJA, H.; VEERMANS, M. Understanding the dynamics of motivation in socially shared learning. International Journal of Educational Research, 47(2):122–135, 2008. [98] JUNG, D.; AVOLIO, B. Effects of leadership style and followers’ cultural values on performance under different task structure conditions. Academy of Management Journal, 42:208–218, 1999. [99] KANKANHALLI, A.; TAN, B.; WEI, K.-K. Conflict and performance in global virtual teams. J. Manage. Inf. Syst., 23(3):237–274, Jan. 2007. [100] KAPLAN, H., R.; NORTON, D. The Balanced Scorecard: Translating Strategy Into Action. Harvard Business School Press. Harvard Business School Publishing India Pvt. Limited, 1996. [101] KESSLER, E. H. Leveraging e-r&d processes: a knowledge-based view. Technovation, 23:905–915, 2003. [102] KIRSCHNER, P. A.; STRIJBOS, J.-W.; KREIJNS, K.; BEERS, P. Designing electronic collaborative learning environments. Educational Technology Research and Development, 52(3):47–66, 2004. [103] KOLB, D. A. The modern american college - Responding to the new realities of diverse students and a changing of society. Artur W. Chichering and associates, 1981. [104] KOLB D., A. Learning Style Inventory: Technical Manual. 1976. [105] KREBS, S., H. E.; BORDIA, P. Virtual teams and group member dissimiliarity. Small Group Research, 37(6):721–741, 2006. [106] KREIJNS, C.; P.A., K.; JOCHEMS, W. Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Computers in Human Behavior, 19:335–354, 2003. [107] KREIJNSA, K.; KIRSCHNERB, P. A.; JOCHEMSB, W. Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Computers in Human Behavior, 19:335–353, 2003. [108] KURTZBERG, T. R. Feeling creative, being creative: An empirical study of diversity and creativity in teams. Creativity Research Journal, 17 (1):51–65, 2005. [109] LAZERSON, M.; WAGENER, U. Teaching and learning the unfamiliar. Change: The Magazine of Higher Learning, 31:38–39, 1999. [110] LIANG, C.-J.; LIN, Y.-L.; HUANG, H.-F. Effect of core competence on organizational performance in an airport shopping center. Journal of Air Transport Management, 31(0):23 – 26, 2013. <ce:title>Notes</ce:title>. [111] LIN, Y.-T.; HUANG, Y.-M.; CHENG, S.-C. An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Comput. Educ., 55(4):1483–1493, Dec. 2010. [112] LLOYD, V.; RUDD, C.; TAYLOR, S. ITIL - Service Design. TSO (The Stationery Office), 2007. [113] MACMASTER, M. D. The Intelligence Advantage: Organizing for Complexity. Butterworth-Heinemann Limited, 1996. [114] MAHFOUD, S. W. Boltzmann selection. In: Handbook of Evolutionary Computation, p. 231–234. IOP Publishing Ltd and Oxford University Press, 1997. Release 97/1. [115] MARGERISON, C.; MCCANN, D. Team Management: Practical New Approaches. Management Books 2000 Limited, 1995. [116] MARK, G. Conventions and commitments in distributed cscw groups. Comput. Supported Coop. Work, 11(3):349–387, Nov. 2002. [117] MARREIROS, A.; FONSECA, J.; CONBOY, J. O trabalho científico em ambiente de aprendizagem cooperativa. Revista da Educação, 10(2):99–112, 2001. [118] MARROTTA, S.; PETERS, B.; PALIOKAS, K. Teaching group dinamics: An interdisciplinary model. Journal of Specialists in Group Work, 25(1):16–28, 2000. [119] MARTÍN, E.; PAREDES, P. Using learning styles for dynamic group formation in adaptive collaborative hypermedia systems. Matera, M. & Comai, S. (Eds.) Engineering Advanced Web Applications. Proceedings of Workshops in Connection with 4th International Conference on Web Engineering, p. 188–197, 2004. [120] MICHALEWICZ, Z.; FOGEL, D. How to Solve It: Modern Heuristics. Springer, 2004. [121] MICHALEWICZ, Z. Genetic algorithms, numerical optimization, and constraints. p. 151–158. Morgan Kaufmann, 1995. [122] MICHALEWICZ, Z. A survey of constraint handling techniques in evolutionary computation methods. In: Proceedings of the 4th Annual Conference on Evolutionary Programming, p. 135–155. MIT Press, 1995. [123] MICHALEWICZ, Z. Genetic algorithms + data structures = evolution programs (3rd ed.). Springer-Verlag, London, UK, UK, 1996. [124] MISIOLEK, N. I.; HECKMAN, R. Patterns of emergent leadership in virtual teams. In: Proceedings of the Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS’05) - Track 1 - Volume 01, HICSS ’05, p. 49.1–, Washington, DC, USA, 2005. IEEE Computer Society. [125] MITCHELL, M. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA, 1998. [126] MORAES, R. Análise de conteúdo. Internet, 1999. http://cliente.argo.com.br/ mgos/analise_de_conteudo_moraes.html, acesso em 13.07.2013. [127] MORENO, J.; OVALLE, D. A.; VICARI, R. M. A genetic algorithm approach for group formation in collaborative learning considering multiple student characteristic. Computers & Education, 2011. [128] MUDRACK, P. E.; FARRELL, G. M. An examination of functional role behavior and its consequences for individuals in group settings. Small Group Research, 26(4):542–571, 1995. [129] MULDER, I.; SWAAK, J.; KESSELS, J. In search of reflective behavior and shared understanding in ad hoc expert teams. Cyberpsychol Behavior, 7(2):141–154, April 2004. [130] NASAJON, L. Gerenciamento da diversidade nas organizações. internet, May 2012. http://era.org.br/2012/05/gerenciamento-da-diversidade-nas-organizacoes, acesso em 09.06.2013. [131] NONAKA, I. An Inquiry into the Good, translated by M. Abe and C. Ive. Yale University Press, 1990. [132] NONAKA, I. A dynamic theory of organizational knowledge creation. Organization Science, 5 (1):14–37, 1994. [133] NONAKA, I.; UNIVERSITY, T. The Knowledge-Creating Company : How Japanese Companies Create the Dynamics of Innovation: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, USA, 1995. [134] NONAKA, I. A empresa criadora do conhecimento. In: Bookman., editor, Gestão do Conhecimento, chapter 2, p. 39–53. Hirotaka Takeuchi and Ikujiro Nonaka, 2009. Tradução: Ana Thorell. [135] NONAKA, I.; TAKEUCHI, H. Teoria da criação do conhecimento organizacional. In: Bookman., editor, Gestão do Conhecimento, chapter 3, p. 54–91. Hirotaka Takeuchi and Ikujiro Nonaka, 2009. Tradução: Ana Thorell. [136] O’DONNELL, A. M.; DANSEREAU. Scripted cooperation in student dyads: A method for analyzing and enhancing academic learning and performance. In: Hertz-Lazarowitz.; Miller, N., editors, Interaction in cooperative groups: The theoretical anatomy of group learning, p. 120–144, New York, 1992. Cambridge University Press. [137] OLIVER, R.; OMARI, A. Using online technologies to support problem based learning: Learners’ responses and perceptions. Australian Journal of Education Technologies, 15(1):58–79, 1999. [138] ORAVEC, J. Virtual indivuals, virtuals groups. Cambridge University Press, 1996. [139] OUNNAS, A.; MILLARD, D. E.; DAVIS, H. C. A metrics framework for evaluating group formation. ACM, p. 221–224, 2007. [140] PAAVOLA, S. LIPPONEN, L. H. K. Epistemological foundations for cscl: A comparison of three models of innovative knowledge communities. In: CSCL 2002, p. 24–32, 2002. [141] PALMER, J. D.; FIELDS, N. A. Computer supported cooperative work. Washington Post., p. 15–17, 1994. [142] PANITZ, T. A definition of collaborative vs cooperative learning. Internet, 1996. http://www.londonmet.ac.uk/deliberations/collaborative-learning/panitzpaper. cfm, acesso em 24.06.2012. [143] PAREDES, P., A. O. A.; RODRIGUES, P. A method for supporting heterogeneousgroup formation through heuristics and visualization. Journal of Universal Computer Science, 16:2882–2901, 2010. [144] PAUL, S., S. P. S. I.; MYKYTYN, P. Impact of heterogeneity and collaborative conflict management style on the performance of synchronous global virtual teams. Information and Management, 41:303–321, 2004. [145] PEA, R. Seeing what we build together: Distributed multimedia learning environments for transformative communications. In: Koschmann, T., editor, CSCL:Theory and Practice of an emerging paradigm. Lawrence Erlbaum Associates, 1996. [146] PEREIRA, M. A. A.; FREIRE, J. E.; SEIXAS, J. A. Utilização da aprendizagem cooperativa no ensino de engenharia. In: XXII Encontro Nacional de Engenharia de Produção, 2002. [147] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Regimento interno do tribunal de justiça do estado de goiás. Internet, Setembro 2000. [148] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Resolução 44 de 10 de dezembro de 2001. Internet, 12 2001. Institui o Sistema de Controle Interno das atividades administrativas do Poder Judiciário do Estado de Goiás. [149] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Decreto Judiciário 416/2010, chapter I, p. 1. Número 520. Poder Judiciário, 02 2010. Publicado em 12/02/2010. [150] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Decreto Judiciário 288/2011, chapter I, p. 14. Número 914. Poder Judiciário, 09 2011. Publicado em 30/09/2011. [151] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Provimento 11 de 25 de outubro de 2012. Internet, 10 2012. Dispõe sobre a nova sistemática de indenização aos oficiais de justiça avaliadores judiciários, das despesas de condução no cumprimento de mandado da Justiça Gratuita. [152] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Portal da transparência. Internet, 2013. http://www.tjgo.jus.br/index.php/tribunal/tribunal-portaldatransparencia, acesso em 13.07.2013. [153] PORTER, M. Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, 2008. [154] PRAHALAD, C.; HAMEL, G. The core competence of the corporation. Harvard Business Review, p. 1–15, May-June 1990. [155] QURESHI, S. Organisational change through collaborative learning in a network form. Group Decision and Negotiation, 9:129–147, 2000. [156] RAD, P.; LEVIN, G. Achieving project management success using virtual teams. J Ross Publishing Series. J ROSS PUB Incorporated, 2003. [157] REDMOND, M. A. A computer program to aid assignment of student project groups. ACM, p. 134–138, 2001. [158] RESTA, P.; LAFERRIÈRE, T. Technology in support of collaborative learning. Education and Psychology Review, 19:65–83, 2007. [159] ROBBINS, H.; FINLEY, M. Why teams don’t work. Texere, 2000. [160] ROBERT.JR., L. P. A multi-level analysis of the impact of shared leadership in diverse virtual teams. In: Proceedings of the 2013 conference on Computer supported cooperative work, p. 363–374. ACM, 2013. ISBN: 978-1-4503-1331-5. [161] ROBERTS, A. G. Team Role Balance: Investigating Knowledge-Building in CSCL Environment. PhD thesis, Queensland University of Technology, 2007. [162] RODDEN, T. A survey of CSCW systems in Interacting with Computers, volume 3. 1991. [163] RODRIGUES, P. B. Prática de ensino supervisionada em ensino do 1.o e do 2.o ciclo do ensino básico. Master’s thesis, Instituto Politécnico de Bragança - Escola Superior de Educação, 2012. [164] ROMNEY. The benefits of collaborative learning. Internet, december 1996. http://www.ucalgary.ca/pubs/Newsletters/Currents/Vol3.6/Benefits.html, acesso em24.03.2013. [165] ROTH, G.; ASSOR, A.; KANAT-MAYMON, Y.; KAPLAN, H. Autonomous motivation for teaching: How self-determined teaching may lead to self-determined learning. Journal of Educational Psychology, 99(4):761–774, 2007. [166] ROTHLAUF, F. Representations for Genetic and Evolutionary Algorithms. Springer-Verlag, 2006. [167] RUSSELL, S. J.; NORVIG, P.; CANDY, J. F.; MALIK, J. M.; EDWARDS, D. D. Artificial intelligence: a modern approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996. [168] RYAN, R. M.; DECI, E. L. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1):54–67, 2000. [169] SALMON, G. E-moderating: the key to teaching and learning online. 2000. [170] SARKER, S.; SARKER, S.; NICHOLSON, D.; JOSHI, K. Knowledge transfer in virtual systems development teams: an exploratory study of four key enablers. Professional Communication, IEEE Transactions on, 48(2):201–218, 2005. [171] SCHEDLER, A. Conceptualizing accountability. In: Schedler, A.; Diamond, L.; Plattner, M., editors, The Self-Restraining State: Power and Accountability in New Democracies, chapter I, p. 13–28. Lynne Rienner Publishers, 1999. [172] SHAH, A. Why fighting corruption remains a losing battle. In: Antho., editor, Governance, risk and compliance handbook : technology, finance, environmental and international guidance and best practices, chapter 10, p. 133–152. Jonh Wiley and Sons, 2008. [173] SHAMIR, B.; HOUSE, R. J.; ARTHUR, M. B. The motivational effects of charismatic leadership: A self-concept based theory. Organization Science November, 4(4):577–594, 1993. [174] SHAW, M.; ROBBIN, R.; BELSER, J. Group dynamics: the psychology of small group behavior. McGraw-Hill series in psychology. McGraw-Hill, 1981. [175] SIMON, D. Evolutionary Optimization Algorithms. Wiley, 2013. [176] SLAVIN, R. E. Cooperative learning. Review of Educational Research, 50(2):315– 342, 1980. [177] SLAVIN, R. E. Developmental and motivational perspectives on cooperative learning: A reconciliation. Child Development, 58:1161–1167, 1987. [178] SLAVIN, R. E. Research on cooperative learning and achievement: What we know, what we need to know. Contemporary Educational Psychology, 21(4):43–69, 1996. [179] SMITH, E. Applying knowledge enabling methods in the classroom and in the workplace. Journal of Workplace Learning, 12:236–244, 2000. [180] SPADA, H. Of scripts, roles, positions, and models. Computers in Human Behavior, 26:547–550, 2010. [181] STAHL, G.; KOSCHMANN, T.; SUTHERS, D. Computer-supported collaborative learning: An historical perspective. Cambridge handbook of the learning sciences, p. 409–426, 2006. [182] STRIJBOS, J.-W.; WEINBERGER, A. Emerging and scripted roles in computersupported collaborative learning. Computers in Human Behavior, 26(4):491 – 494, 2010. <ce:title>Emerging and Scripted Roles in Computer-supported Collaborative Learning</ce:title>. [183] TAKEUCHI, H.; NONAKA, I. Criação e dialética do conhecimento. In: Bookman., editor, Gestão do Conhecimento, chapter 1, p. 17–38. Hirotaka Takeuchi and Ikujiro Nonaka, 2009. Tradução: Ana Thorell. [184] TAMPOE, M. Exploiting the core competences of your organization. Long Range Planning, 27(4):66 – 77, 1994. [185] TARANTINO, A. Introduction. In: Tarantino, A., editor, Governance, risk and compliance handbook : technology, finance, environmental and international guidance and best practices. Jonh Wiley and Sons, 2008. [186] TEECE, D. J. Strategies for managing knowledge assets: the role of firm structure and industrial context. Long Range Planning, 33:35–54, 2000. [187] TERRACIANO, A.; ABDEL-KHALEK, A.; ADAM, N.AND ADAMOVOVA, L. A. C.; AHAN, H.; ET AL. National character does not reflect mean personality trait levels in 49 cultures. Science, 310(5745):96–100, 2005. [188] THIERENS, D.; GOLDBERG, D.; PEREIRA, A. Domino convergence, drift, and the temporal-salience structure of problems. In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, p. 535–540, 1998. [189] TIDD, J.; BESSANT, J.; PAVITT, K. Managing Innovation: Integrating Technological, Market and Organizational Change. Wiley, 2011. [190] U.S. DEPT. OF ED. OFFICE OF RESEARCH, U. Cooperative learning. Internet, 1992. http://www2.ed.gov/pubs/OR/ConsumerGuides/cooplear.html, acesso em 24.06.2012. [191] VALCKE, M.; MARTENS, R. The problem arena of researching computer supported collaborative learning: Introduction to the special section. Computers & Education, 46(1):1 – 5, 2006. <ce:title>Methodological Issues in Researching CSCL</ce:title>. [192] VALLERAND, R. J.; PELLETIER, L. G.; BLAIS, M. R.; BRIÈRE, N. M.; SENÉCAL, C., V. E. F. The academic motivation scale: A measure of intrinsic, extrinsic, and a motivation in education. Educational and Psychological Measurement, 52:1003–1017, 1992. [193] VECCHIO, R. P. Leadership Understanding the Dynamics of Power and Influence in Organizations. University of Notre Dame Press, 2nd edition, 2007. [194] VONDERWELL, S. An examination of asynchronous communication experiences and perspectives of students in an online course: A case study. The Internet and Higher Education, 6(1):77–90, 2003. [195] WAKEFIELD, R.; LEIDNER, D.; GARRISON, G. A model of conflict, leadership and performance in virtual teams. Information Systems Research, 19(4):434–455, 2008. [196] WEBB, N. M. Testing a theoretical model of student interaction and learning in small groups. In: Hertz-Lazarowitz, R.; Miller, N., editors, Interaction in Cooperative Groups: The theoretical anatomy of group learning, p. 102–119+. Cambridge University Press, 1992. [197] WEBB, N. M. Predicting learning from student interaction: Defining the interaction variable. Educational Psychologist, 18:33–41, 1983. [198] WEINBERGER, A.; FISCHER, F. A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1):71 – 95, 2006. <ce:title>Methodological Issues in Researching CSCL</ce:title>. [199] WESSNER, M.; PFISTER, H. R. Group formation in computer-supported collaborative learning. ACM, 2001. [200] YAMAGUCHI, R.; BOS, N.; OLSON, J. Emergent leadership in small groups using computer-mediated communication. In: Proceedings of the Conference on Computer Support for Collaborative Learning: Foundations for a CSCL Community, CSCL ’02, p. 138–143. International Society of the Learning Sciences, 2002. [201] YANNIBELLI, V.; AMANDI, A. A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context. Expert Systems with Applications, p. 8584–8592, 2012. [202] YUKL, G. Leadership in organizations. Prentice Hall, 2002. [203] ZACCARO, S.; BLAIR, V.; PETERSON, C.; ZAZANIS, M. Collective efficacy. In: Plenum Press, ., editor, Self-Efficacy, Adaptation, and Adjustment : Theory, Research, and Application (Plenum Series in Social/Clinical Psychology), chapter 11, p. 305–328. James E. Maddux, University of Michigan, May 1995. [204] ÖZGÜR YENIAY. Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications, 10(1):45–56, 2005. [205] ZHANG, M.; LADO, A. Information systems and competitive advantage: a competency based view. Technovation, 21:147–156, 2001. [206] ZIGURS, I. Leadership in virtual teams: Oxymoron or opportunity? Organizational Dynamics, 31(4):339–351, 2002. http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess application/pdf Universidade Federal de Goiás Programa de Pós-graduação em Ciência da Computação (INF) UFG Brasil Instituto de Informática - INF (RG) reponame:Biblioteca Digital de Teses e Dissertações da UFG instname:Universidade Federal de Goiás instacron:UFG |