Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-18T21:14:48Z No. of bitstreams: 2 DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Rejected by Luciana Ferrei...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal de Goiás
2014
|
Subjects: | |
Online Access: | http://repositorio.bc.ufg.br/tede/handle/tede/3108 |
id |
ndltd-IBICT-oai-repositorio.bc.ufg.br-tede-3108 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Paclitaxel Nanopartículas lipídicas sólidas magnéticas Hipertermia magnética Paclitaxel Solid Lipid nanoparaticles Magnetic hyperthermia FARMACIA::ANALISE E CONTROLE E MEDICAMENTOS |
spellingShingle |
Paclitaxel Nanopartículas lipídicas sólidas magnéticas Hipertermia magnética Paclitaxel Solid Lipid nanoparaticles Magnetic hyperthermia FARMACIA::ANALISE E CONTROLE E MEDICAMENTOS Oliveira, Relton Romeis de Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas |
description |
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-18T21:14:48Z
No. of bitstreams: 2
DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) === Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Há problema na citação, a qual foi registrada assim:
Oliveira, Relton Romeis de - Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas - 2013 - 62 f. - Dissertação - Programa de Pós-graduação em Ciências Farmacêuticas (FF) - Universidade Federal de Goiás - Goiânia, 2013.
Deve-se seguir a NBR 6023. Ex.:
ALCÂNTARA, Guizelle Aparecida de. Caracterização farmacognostica e atividade antimicrobiana da folha e casca do caule da myrciarostratadc.(myrtaceae). 2012. 41 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2012.
Ou seja, terá que alterar o que aparece nesse campo já registrado automático pelo programa, como: pontuação o sobrenome todo em maiúsculo, etc.
on 2014-09-19T13:22:35Z (GMT) === Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-19T19:22:41Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5) === Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-19T19:33:51Z (GMT) No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5) === Made available in DSpace on 2014-09-19T19:33:51Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5)
Previous issue date: 2013-02-28 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === This work describes the development and characterization of magnetic solid lipid nanoparticles (SLNMP) containing paclitaxel for magnetohyperthermia applications. Magnetic nanoparticles were prepared by coprecipitation of Fe(II) and Fe(III) salts in an alkaline medium. SLNMP containing paclitaxel were prepared by emulsification – solvent diffusion. Characterization of the nanostructured system included morphology analysis, average diameter and size distribution, encapsulation efficiency for paclitaxel, stability and magnetic properties of magnetometry and magnetohyperthermia. Magnetic SLNMP containing paclitaxel exhibited an average diameter of 200nm with a polydispersity index of 0,189; which was confirmed by Atomic Force Microscopy. Stability studies conducted with lyophilized samples showed a decrease of approximately 15% in the amount of encapsulated paclitaxel in 30 days. Magnetometry data confirmed the superparamagnetic behavior of the nanocarriers and magnetohyperthermia effect was demonstrated by an increase of 25°C of the temperature of the nanocarrier. A three fold increase in the drug release rate was obtained when the temperature was raised from 25 to 43°C in the in vitro
release assay. This indicated that temperature increase acts as a trigger mechanism
for drug release, allowing the preparation of nanostructured controlled drug delivery systems controlled by magnetohyperthermia. === Este trabalho descreve o desenvolvimento e caracterização de nanopartículas lipídicas sólidas magnéticas contendo paclitaxel para aplicação em magnetohipertermia. Nanopartículas magnéticas foram obtidas pelo método de coprecipitação de sais de Fe(II) e Fe(III) em meio alcalino. Nanopartículas lipídicas sólidas magnéticas contendo paclitaxel foram preparadas pelo método de emulsificação-difusão de solvente. O sistema nanoestruturado foi caracterizado quanto à morfologia, diâmetro médio e distribuição de tamanho, eficiência de encapsulação do paclitaxel, estabilidade e propriedades magnéticas de magnetometria e magnetohipertermia. As nanopartículas lipídicas sólidas magnéticas contendo paclitaxel apresentaram diâmetro médio de aproximadamente 200nm com índice de polidispersão de 0,189 e 67% de eficiência de encapsulação do PTX. O estudo de estabilidade realizado em amostras liofilizadas mostrou redução de aproximadamente 15% do paclitaxel encapsulado no período de 30 dias. Pelo estudo de magnetometria os nanocarreadores apresentaram curva de magnetização condizente com material em regime perparamagnético e o efeito de magnetohipertermia foi verificado pelo aumento da temperatura de
aproximadamente 25ºC do nanocarreador.A taxa de liberação do paclitaxel foi aumentada em 3 vezes quando a temperatura foi elevada de 25ºC para 43ºC no ensaio de liberação in vitro indicando que o aquecimento dos nanocarreadores pode representar um mecanismo desencadeador do processo de liberação do fármaco,
possibilitando a obtenção de sistemas de liberação controlada por magnetohipertermia. |
author2 |
Lima, Eliana Martins |
author_facet |
Lima, Eliana Martins Oliveira, Relton Romeis de |
author |
Oliveira, Relton Romeis de |
author_sort |
Oliveira, Relton Romeis de |
title |
Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas |
title_short |
Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas |
title_full |
Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas |
title_fullStr |
Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas |
title_full_unstemmed |
Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas |
title_sort |
desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas |
publisher |
Universidade Federal de Goiás |
publishDate |
2014 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/3108 |
work_keys_str_mv |
AT oliveirareltonromeisde desenvolvimentocaracterizacaoeestudodeliberacaoinvitropormagnetohipertermiadepaclitaxelemnanoparticulaslipidicassolidasmagneticas AT oliveirareltonromeisde magneticallytriggeredcontrolledreleaseofpaclitaxelfromsolidlipidnanoparticles |
_version_ |
1718893670060523520 |
spelling |
ndltd-IBICT-oai-repositorio.bc.ufg.br-tede-31082019-01-21T22:22:47Z Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas Magnetically triggered controlled release of paclitaxel from solid lipid nanoparticles Oliveira, Relton Romeis de Lima, Eliana Martins Bakuzis, Andris Figueiroa Lima, Eliana Martins Alonso, Antonio Taveira, Stephânia Fleury Paclitaxel Nanopartículas lipídicas sólidas magnéticas Hipertermia magnética Paclitaxel Solid Lipid nanoparaticles Magnetic hyperthermia FARMACIA::ANALISE E CONTROLE E MEDICAMENTOS Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-18T21:14:48Z No. of bitstreams: 2 DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Há problema na citação, a qual foi registrada assim: Oliveira, Relton Romeis de - Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas - 2013 - 62 f. - Dissertação - Programa de Pós-graduação em Ciências Farmacêuticas (FF) - Universidade Federal de Goiás - Goiânia, 2013. Deve-se seguir a NBR 6023. Ex.: ALCÂNTARA, Guizelle Aparecida de. Caracterização farmacognostica e atividade antimicrobiana da folha e casca do caule da myrciarostratadc.(myrtaceae). 2012. 41 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2012. Ou seja, terá que alterar o que aparece nesse campo já registrado automático pelo programa, como: pontuação o sobrenome todo em maiúsculo, etc. on 2014-09-19T13:22:35Z (GMT) Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-19T19:22:41Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5) Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-19T19:33:51Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5) Made available in DSpace on 2014-09-19T19:33:51Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) DISSERTAÇÃO REVISÃO FINAL.pdf: 1776163 bytes, checksum: 9cc893b53fed44267523efd8f741e790 (MD5) Previous issue date: 2013-02-28 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES This work describes the development and characterization of magnetic solid lipid nanoparticles (SLNMP) containing paclitaxel for magnetohyperthermia applications. Magnetic nanoparticles were prepared by coprecipitation of Fe(II) and Fe(III) salts in an alkaline medium. SLNMP containing paclitaxel were prepared by emulsification – solvent diffusion. Characterization of the nanostructured system included morphology analysis, average diameter and size distribution, encapsulation efficiency for paclitaxel, stability and magnetic properties of magnetometry and magnetohyperthermia. Magnetic SLNMP containing paclitaxel exhibited an average diameter of 200nm with a polydispersity index of 0,189; which was confirmed by Atomic Force Microscopy. Stability studies conducted with lyophilized samples showed a decrease of approximately 15% in the amount of encapsulated paclitaxel in 30 days. Magnetometry data confirmed the superparamagnetic behavior of the nanocarriers and magnetohyperthermia effect was demonstrated by an increase of 25°C of the temperature of the nanocarrier. A three fold increase in the drug release rate was obtained when the temperature was raised from 25 to 43°C in the in vitro release assay. This indicated that temperature increase acts as a trigger mechanism for drug release, allowing the preparation of nanostructured controlled drug delivery systems controlled by magnetohyperthermia. Este trabalho descreve o desenvolvimento e caracterização de nanopartículas lipídicas sólidas magnéticas contendo paclitaxel para aplicação em magnetohipertermia. Nanopartículas magnéticas foram obtidas pelo método de coprecipitação de sais de Fe(II) e Fe(III) em meio alcalino. Nanopartículas lipídicas sólidas magnéticas contendo paclitaxel foram preparadas pelo método de emulsificação-difusão de solvente. O sistema nanoestruturado foi caracterizado quanto à morfologia, diâmetro médio e distribuição de tamanho, eficiência de encapsulação do paclitaxel, estabilidade e propriedades magnéticas de magnetometria e magnetohipertermia. As nanopartículas lipídicas sólidas magnéticas contendo paclitaxel apresentaram diâmetro médio de aproximadamente 200nm com índice de polidispersão de 0,189 e 67% de eficiência de encapsulação do PTX. O estudo de estabilidade realizado em amostras liofilizadas mostrou redução de aproximadamente 15% do paclitaxel encapsulado no período de 30 dias. Pelo estudo de magnetometria os nanocarreadores apresentaram curva de magnetização condizente com material em regime perparamagnético e o efeito de magnetohipertermia foi verificado pelo aumento da temperatura de aproximadamente 25ºC do nanocarreador.A taxa de liberação do paclitaxel foi aumentada em 3 vezes quando a temperatura foi elevada de 25ºC para 43ºC no ensaio de liberação in vitro indicando que o aquecimento dos nanocarreadores pode representar um mecanismo desencadeador do processo de liberação do fármaco, possibilitando a obtenção de sistemas de liberação controlada por magnetohipertermia. 2014-09-19T19:33:51Z 2013-02-28 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis Oliveira, Relton Romeis de. Desenvolvimento, caracterização e estudo de liberação in vitro por magnetohipertermia de paclitaxel em nanopartículas lipídicas sólidas magnéticas. 2013. 62 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Programa de Pós-graduação em Ciências Farmacêuticas (FF) - Universidade Federal de Goiás, Goiânia, 2013. http://repositorio.bc.ufg.br/tede/handle/tede/3108 por 824936988196152412 600 600 600 600 6010281161524209375 6216025074656932336 2075167498588264571 ARIAS, F.; OTERO, J. M.; GUERRERO, C.; CARDONA, A. F.; VARGAS, C. A.; CARRANZA, H.; CASTRO, C.; MORA, M.; GUERRA, B.; OJEDA, K.; RAMÍREZ, H.; REVEIZ, L.; BIJELIC, L.; ZAPPA, L.; SUGARBAKER, P. Pseudomixoma peritoneal: primeros casos tratados en Colombia con peritonectomía radical y quimioterapia intraperitoneal hipertérmica. Revista Colombiana de Cirugía, v. 24, p. 184-194, 2009. BANERJI, U.; KUCIEJEWSKA, A.; ASHLEY, S.; WALSH, G.; O’BRIEN, M.; JOHNSTON, S.; SMITH, I. Factors determining outcome after third line chemotherapy for metastatic breast cancer. The Breast, v. 16, n. 4, p. 359-366, 2007. BANGHAM, A. D.; HORNE, R. W. Negative staining of phospholipids and their structural modification by. Journal of molecular biology, v. 8, p. 660-668, 1964. BERNARDI, A.; BRAGANHOL, E.; JÄGER, E.; FIGUEIRÓ, F.; EDELWEISS, M. I.; POHLMANN, A. R.; GUTERRES, S. S.; BATTASTINI, A. M. O. Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Letters, v. 281, n. 1, p. 53-63, 2009. BROWN, W. F. JR. Thermal Fluctuations of a Single-Domain Particle. Physical Review, v. 130, n. 5, p. 1677-1686, 1963. BUCCHERI, G.; FERRIGNO, D. Second-line weekly paclitaxel in patients with inoperable non-small cell lung cancer who fail combination chemotherapy with cisplatin. Lung Cancer, v. 45, n. 2, p. 227-236, 2004. CABUIL, V.; DUPUIS, V.; TALBOT, D.; NEVEU, S. Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the nanoparticle size. Journal of Magnetism and Magnetic Materials, v. 323, n. 10, p. 1238-1241, 2011. CAVALLI, R.; MOREL, S.; GASCO, M. R.; CHETONI, P.; SAETTONE, M. F. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. International Journal of Pharmaceutics, v. 117, n. 2, p. 243-246, 1995. CIRSTOIU-HAPCA, A.; BUCHEGGER, F.; LANGE, N.; BOSSY, L.; GURNY, R.; DELIE, F. Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. Journal of Controlled Release, v. 144, n. 3, p. 324-331, 2010. CORCHERO, J. L.; VILLAVERDE, A. Biomedical applications of distally controlled magnetic nanoparticles. Trends in Biotechnology, v. 27, n. 8, p. 468-476, 2009. DADASHZADEH, S.; MIRAHMADI, N.; BABAEI, M. H.; VALI, A. M. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge. Journal of Controlled Release, v. 148, n. 2, p. 177-186, 2010. DEVITA, V. T.; CHU, E. A History of Cancer Chemotherapy. Cancer Research, v. 68, n. 21, p. 8643-8653, 2008. DÍAZ-LÓPEZ, R.; TSAPIS, N.; SANTIN, M.; BRIDAL, S. L.; NICOLAS, V.; JAILLARD, D.; LIBONG, D.; CHAMINADE, P.; MARSAUD, V.; VAUTHIER, C.; FATTAL, E. The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials, v. 31, n. 7, p. 1723-1731, 2010. FADDA, P.; MONDUZZI, M.; CABOI, F.; PIRAS, S.; LAZZARI, P. Solid lipid nanoparticle preparation by a warm microemulsion based process: Influence of microemulsion microstructure. International Journal of Pharmaceutics, v. 446, n. 1–2, p. 166-175, 2013. FALK, M. H.; ISSELS, R. D. Hyperthermia in oncology. International Journal of Hyperthermia, v. 17, n. 1, p. 1-18, 2001. FENG, S. S.; ZHAO, L.; ZHANG, Z.; BHAKTA, G.; YIN WIN, K.; DONG, Y.; CHIEN, S. hemotherapeutic engineering: Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo. Chemical Engineering Science, v. 62, n. 23, p. 6641-6648, 2007. GHADIRI, M.; VATANARA, A.; DOROUD, D.; ROHOLAMINI NAJAFABADI, A. Paromomycin loaded solid lipid nanoparticles: Characterization of production parameters. Biotechnology and Bioprocess Engineering, v. 16, n. 3, p. 617-623, 2011. GONZALES, M.; KRISHNAN, K. M. Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. Journal of Magnetism and Magnetic Materials, v. 293, n. 1, p. 265-270, 2005. GREEN, M. R.; MANIKHAS, G. M.; ORLOV, S.; AFANASYEV, B.; MAKHSON, A. M.; BHAR, P.; HAWKINS, M. J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Annals of Oncology, v. 17, n. 8, p. 1263-1268, 2006. GUPTA, Y.; JAIN, A.; JAIN, S. K. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. Journal of Pharmacy and Pharmacology, v. 59, n. 7, p. 935-940, 2007. GYERGYEK, S.; MAKOVEC, D.; DROFENIK, M. Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents. Journal of Colloid and Interface Science, v. 354, n. 2, p. 498-505, 2011. HAO, R.; XING, R.; XU, Z.; HOU, Y.; GAO, S.; SUN, S. Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, v. 22, n. 25, p. 2729-2742, 2010. HASHIDA, N.; OHGURO, N.; YAMAZAKI, N.; ARAKAWA, Y.; OIKI, E.; MASHIMO, H.; KUROKAWA, N.; TANO, Y. High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Experimental Eye Research, v. 86, n. 1, p. 138-149, 2008. HERGT, R.; ANDRA, W.; D'AMBLY, C. G.; HILGER, I.; KAISER, W. A.; RICHTER, U.; SCHMIDT, H. G. Physical limits of hyperthermia using magnetite fine particles.Magnetics, IEEE Transactions on, v. 34, n. 5, p. 3745-3754, 1998. HUHMANN, M. B.; CUNNINGHAM, R. S. Importance of nutritional screening in treatment of cancer-related weight loss. The Lancet Oncology, v. 6, n. 5, p. 334343, 2005. IMAIZUMI, M. Postoperative adjuvant cisplatin, vindesine, plus uracil-tegafur chemotherapy increased survival of patients with completely resected p-stage I nonsmall cell lung cancer. Lung Cancer, v. 49, n. 1, p. 85-94, 2005. IYER, A. K.; KHALED, G.; FANG, J.; MAEDA, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, v. 11, n. 17–18, p. 812-818, 2006. JAFARI, T.; SIMCHI, A.; KHAKPASH, N. Synthesis and cytotoxicity assessment of superparamagnetic iron–gold core–shell nanoparticles coated with polyglycerol. Journal of Colloid and Interface Science, v. 345, n. 1, p. 64-71, 2010. JILES, D. C. Frequency dependence of hysteresis curves in 'non-conducting' magnetic materials. Magnetics, IEEE Transactions on, v. 29, n. 6, p. 3490-3492, 1993. JILES, D. C. Modelling the effects of eddy current losses on frequency dependenthysteresis in electrically conducting media. Magnetics, IEEE Transactions on, v. 30, n. 6, p. 4326-4328, 1994. JOHANNSEN, M.; THIESEN, B.; GNEVECKOW, U.; TAYMOORIAN, K.; WALDÖFNER, N.; SCHOLZ, R.; DEGER, S.; JUNG, K.; LOENING, S. A.; JORDAN, A. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. The Prostate, v. 66, n. 1, p. 97-104, 2006. JORDAN, A.; SCHOLZ, R.; WUST, P.; FÄHLING, H.; ROLAND, F. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, v. 201, n. 1–3, p. 413-419, 1999. JÓZEFCZAK, A.; SKUMIEL, A. Study of heating effect and acoustic properties of dextran stabilized magnetic fluid. Journal of Magnetism and Magnetic Materials, v. 311, n. 1, p. 193-196, 2007. KAMANGAR, F.; DORES, G. M.; ANDERSON, W. F. Patterns of Cancer Incidence, Mortality, and Prevalence Across Five Continents: Defining Priorities to Reduce Cancer Disparities in Different Geographic Regions of the World. Journal of Clinical Oncology, v. 24, n. 14, p. 2137-2150, 2006. LAMPRECHT, A.; UBRICH, N.; YAMAMOTO, H.; SCHÄFER, U.; TAKEUCHI, H.; LEHR, C. M.; MAINCENT, P.; KAWASHIMA, Y. Design of rolipram-loaded nanoparticles: comparison of two preparation methods. Journal of Controlled Release, v. 71, n. 3, p. 297-306, 2001. LANDI, G. T.; BAKUZIS, A. F. On the energy conversion efficiency in magnetic hyperthermia applications: A new perspective to analyze the departure from the linear regime. Journal of Applied Physics, v. 111, n. 8, p. 083915-083915-8, 2012. LEE, M. K.; LIM, S. J.; KIM, C. K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, v. 28, n. 12, p. 2137-2146, 2007. LI, G. Y.; JIANG, Y. R.; HUANG, K. L.; DING, P.; CHEN, J. Preparation and properties of magnetic Fe3O4 –chitosan nanoparticles. Journal of Alloys and Compounds, v. 466, n. 1–2, p. 451-456, 2008. LI, Z.; KAWASHITA, M.; ARAKI, N.; MITSUMORI, M.; HIRAOKA, M.; DOI, M. Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Materials Science and Engineering: C, v. 30, n. 7, p. 990996, 2010. LIANG, X. J.; CHEN, C.; ZHAO, Y.; WANG, P. Circumventing Tumor Resistance to Chemotherapy by Nanotechnology. In: ZHOU, J. (Ed.). Multi-Drug Resistance in Cancer: Humana Press, v.596, 2010. cap. 21, p. 467-488. (Methods in MolecularBiology). ISBN 978-1-60761-415-9. LIU, G.; HONG, R. Y.; GUO, L.; LI, Y. G.; LI, H. Z. Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles. Applied Surface Science, v. 257, n. 15, p. 6711-6717, 2011. LOVE, R. R.; LEVENTHAL, H.; EASTERLING, D. V.; NERENZ, D. R. Side effects and emotional distress during cancer chemotherapy. Cancer, v. 63, n. 3, p. 604-612, 1989. MAEDA, H.; WU, J.; SAWA, T.; MATSUMURA, Y.; HORI, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, v. 65, n. 1–2, p. 271-284, 2000. MARQUELE-OLIVEIRA, F.; DE ALMEIDA SANTANA, D. C.; TAVEIRA, S. F.; VERMEULEN, D. M.; MORAES DE OLIVEIRA, A. R.; DA SILVA, R. S.; LOPEZ, R. F. V. Development of nitrosyl ruthenium complex-loaded lipid carriers for topical administration: improvement in skin stability and in nitric oxide release by visible light irradiation. Journal of Pharmaceutical and Biomedical Analysis, v. 53, n. 4, p. 843-851, 2010. MEENACH, S. A.; HILT, J. Z.; ANDERSON, K. W. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomaterialia, v. 6, n. 3, p. 1039-1046, 2010. MEEROD, S.; TUMCHARERN, G.; WICHAI, U.; RUTNAKORNPITUK, M. Magnetite nanoparticles stabilized with polymeric bilayer of poly(ethylene glycol) methyl ether– poly(ɛ-caprolactone) copolymers. Polymer, v. 49, n. 18, p. 3950-3956, 2008. MEHNERT, W.; MÄDER, K. Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews, v. 47, n. 2–3, p. 165-196, 2001. MIAO, J.; DU, Y. Z.; YUAN, H.; ZHANG, X. G.; HU, F. Q. Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids and Surfaces B: Biointerfaces, v. 110, n. 0, p. 74-80, 2013. MILECKI, P.; NAWROCKI, S.; SKONECZNA, I.; KWIAS, Z. Treatment of bladder cancer: the present and the future. Reports of Practical Oncology & Radiotherapy, v. 8, n. 1, p. 25-32, 2003. MING-HUANG, H.; CHUNG-YU, L.; YU-CHUAN, S. Magnetic solid lipid nanoparticles as mediators for controlled hyperthermia. Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on, 2008. 6-9 Jan. 2008. p.788-791. MORA-HUERTAS, C. E.; FESSI, H.; ELAISSARI, A. Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, v. 385, n. 1–2, p. 113142, 2010. MÜLLER, R. H.; MAAEN, S.; WEYHERS, H.; SPECHT, F.; LUCKS, J. S. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. International Journal of Pharmaceutics, v. 138, n. 1, p. 85-94, 1996. MULLER, R. H.; MEHNERT, W.; LUCKS, J. S.; SCHWARZ, C.; ZUR MUHLEN, A.; WEYHERS, H.; FREITAS, C.; RUHL, D. Solid lipid nanoparticles (SLN) – An alternative colloidal carrier system for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, v. 41, n. 1, p. 62-69, 1995. MÜLLER, R. H.; RADTKE, M.; WISSING, S. A. Nanostructured lipid matrices for improved microencapsulation of drugs. International Journal of Pharmaceutics, v. 242, n. 1–2, p. 121-128, 2002. NORDLINGER, B.; VAN CUTSEM, E.; ROUGIER, P.; KÖHNE, C.-H.; YCHOU, M.; SOBRERO, A.; ADAM, R.; ARVIDSSON, D.; CARRATO, A.; GEORGOULIAS, V.; GIULIANTE, F.; GLIMELIUS, B.; GOLLING, M.; GRUENBERGER, T.; TABERNERO, J.; WASAN, H.; POSTON, G. Does chemotherapy prior to liver resection increase the potential for cure in patients with metastatic colorectal cancer? A report from the European Colorectal Metastases Treatment Group. European Journal of Cancer, v. 43, n. 14, p. 2037-2045, 2007. OLIVEIRA, R. R.; FERREIRA, F. S.; CINTRA, E. R.; BRANQUINHO, L. C.; BAKUZIS, A. F.; LIMA, E. M. Magnetic Nanoparticles and Rapamycin Encapsulated into Polymeric Nanocarriers. Journal of Biomedical Nanotechnology, v. 8, n. 2, p. 193-201, 2012. PANG, X. J.; ZHOU, J.; CHEN, J. J.; YU, M. H.; CUI, F. D.; ZHOU, W. L. Synthesis of Ibuprofen Loaded Magnetic Solid Lipid Nanoparticles. Magnetics, IEEE Transactions on, v. 43, n. 6, p. 2415-2417, 2007. PARK, J. H.; LEE, S.; KIM, J. H.; PARK, K.; KIM, K.; KWON, I. C. Polymeric nanomedicine for cancer therapy. Progress in Polymer Science, v. 33, n. 1, p. 113137, 2008. PELTIER, S.; OGER, J. M.; LAGARCE, F.; COUET, W.; BENOÎT, J. P. Enhanced Oral Paclitaxel Bioavailability After Administration of Paclitaxel-Loaded Lipid Nanocapsules. Pharmaceutical Research, v. 23, n. 6, p. 1243-1250, 2006. PEREZ, C.; SANCHEZ, A.; PUTNAM, D.; TING, D.; LANGER, R.; ALONSO, M. J. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Controlled Release, v. 75, n. 1–2, p. 211-224, 2001. PINTO REIS, C.; NEUFELD, R. J.; RIBEIRO, A. J.; VEIGA, F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, v. 2, n. 1, p. 8-21, 2006. RANG, H. P. D., M. M.; RITTER, J. M.; MOORE, P. K. Farmacologia. Elsevier, v. 5, 2003. ROSENSWEIG, R. E. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, v. 252, p. 370-374, 2002. RUTNAKORNPITUK, M.; MEEROD, S.; BOONTHA, B.; WICHAI, U. Magnetic corebilayer shell nanoparticle: A novel vehicle for entrapmentof poorly water-soluble drugs. Polymer, v. 50, n. 15, p. 3508-3515, 2009. SCHWARZ, C.; MEHNERT, W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). International Journal of Pharmaceutics, v. 157, n. 2, p. 171179, 1997. SHAFIQ, J.; BARTON, M.; NOBLE, D.; LEMER, C.; DONALDSON, L. J. An international review of patient safety measures in radiotherapy practice. Radiotherapy and Oncology, v. 92, n. 1, p. 15-21, 2009. SHARMA, A.; SHARMA, U. S. Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, v. 154, n. 2, p. 123-140, 1997. SHEN, J.; SUN, H.; XU, P.; YIN, Q.; ZHANG, Z.; WANG, S.; YU, H.; LI, Y. Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials, v. 34, n. 5, p. 1581-1590, 2013. SHUBAYEV, V. I.; PISANIC II, T. R.; JIN, S. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews, v. 61, n. 6, p. 467-477, 2009. SIEGEL, R.; NAISHADHAM, D.; JEMAL, A. Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, v. 62, n. 1, p. 10-29, 2012. SILVA, A. C.; GONZÁLEZ-MIRA, E.; GARCÍA, M. L.; EGEA, M. A.; FONSECA, J.; SILVA, R.; SANTOS, D.; SOUTO, E. B.; FERREIRA, D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, v. 86, n. 1, p. 158-165, 2011. SILVÉRIO, C. A. Eletromagnetismo. 1. Rio de Janeiro: 2001. SOPPIMATH, K. S.; AMINABHAVI, T. M.; KULKARNI, A. R.; RUDZINSKI, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, v. 70, n. 1-2, p. 1-20, 2001. SOUZA, L. G.; SILVA, E. J.; MARTINS, A. L. L.; MOTA, M. F.; BRAGA, R. C.; LIMA, E. M.; VALADARES, M. C.; TAVEIRA, S. F.; MARRETO, R. N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. European Journal of Pharmaceutics and Biopharmaceutics, v. 79, n. 1, p. 189196, 2011. SOUZA, M. V. N. D. Novos produtos naturais capazes de atuar na estabilização de microtúbulos, um importante alvo no combate ao câncer. Química Nova, v. 27, p. 308-312, 2004. SUBEDI, R. K.; KANG, K. W.; CHOI, H. K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. European Journal of Pharmaceutical Sciences, v. 37, n. 3–4, p. 508-513, 2009. SYLVESTER, J. E.; GRIMM, P. D.; BLASKO, J. C.; MILLAR, J.; ORIO III, P. F.; SKOGLUND, S.; ALBREATH, R. W.; MERRICK, G. 15-Year biochemical relapse free survival in clinical Stage T1-T3 prostate cancer following combined external beam radiotherapy and brachytherapy; Seattle experience. International Journal of Radiation Oncology*Biology*Physics, v. 67, n. 1, p. 57-64, 2007. TROMBINO, S.; CASSANO, R.; FERRARELLI, T.; BARONE, E.; PICCI, N.; MANCUSO, C. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids and Surfaces B: Biointerfaces, v. 109, n. 0, p. 273-279, 2013. VASSARD, D.; OLSEN, M. H.; ZINCKERNAGEL, L.; VIBE-PETERSEN, J.; DALTON, S. O.; JOHANSEN, C. Psychological consequences of lymphoedema associated with breast cancer: A prospective cohort study. European Journal of Cancer, v. 46, n. 18, p. 3211-3218, 2010. VERDE, E. L.; LANDI, G. T.; CARRIAO, M. S.; DRUMMOND, A. L.; GOMES, J. A.; VIEIRA, E. D.; SOUSA, M. H.; BAKUZIS, A. F. Field dependent transition to the nonlinear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Advances, v. 2, n. 3, p. 032120, 2012. VERDE, E. L.; LANDI, G. T.; GOMES, J. A.; SOUSA, M. H.; BAKUZIS, A. F. Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations. Journal of Applied Physics, v. 111, n. 12, p. 123902-123902-8, 2012. VIDEIRA, M.; ALMEIDA, A. J.; FABRA, À. Preclinical evaluation of a pulmonar delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine: Nanotechnology, Biology and Medicine, v. 8, n. 7, p. 1208-1215, 2012. WANG, J. Z.; LI, X. A. Evaluation of external beam radiotherapy and brachytherapy for localized prostate cancer using equivalent uniform dose. Medical physics, v. 30, n. 1, p. 34-40, 2003. WISSING, S. A.; KAYSER, O.; MÜLLER, R. H. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, v. 56, n. 9, p. 1257-1272, 2004. YU, W.; ZHANG, T.; ZHANG, J.; QIAO, X.; YANG, L.; LIU, Y. The synthesis of octahedral nanoparticles of magnetite. Materials Letters, v. 60, n. 24, p. 2998-3001, 2006. ZHOU, J.; LEUSCHNER, C.; KUMAR, C.; HORMES, J. F.; SOBOYEJO, W. O. Subcellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials, v. 27, n. 9, p. 2001-2008, 2006. ZHU, W.; MASAKI, T.; CHEUNG, A. K.; KERN, S. E. In-vitro Release of Rapamycin from a Thermosensitive Polymer for the Inhibition of Vascular Smooth Muscle Cell Proliferation. 2009. 3-12 ISBN 0975-0851. Disponível em: < http://www.biomedsearch.com/nih/In-vitro-Release-Rapamycin-from/20190878.html >. http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess application/pdf Universidade Federal de Goiás Programa de Pós-graduação em Ciências Farmacêuticas (FF) UFG Brasil Faculdade Farmácia - FF (RG) reponame:Biblioteca Digital de Teses e Dissertações da UFG instname:Universidade Federal de Goiás instacron:UFG |