Uma abordagem fuzzy na detecção automática de mudanças do uso do solo usando imagens de fração e de informações de contexto espacial

Nesta dissertação está proposta uma metodologia para fins de detecção de mudanças do uso do solo em imagens multitemporais de sensoriamento remoto. Em lugar de classificar os pixels de imagens que cobrem uma cena, em duas classes exaustivas e mutuamente excludentes (mudança, não-mudança), propõe-se...

Full description

Bibliographic Details
Main Author: Zanotta, Daniel Capella
Other Authors: Haertel, Vitor Francisco de Araújo
Format: Others
Language:Portuguese
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10183/27039
Description
Summary:Nesta dissertação está proposta uma metodologia para fins de detecção de mudanças do uso do solo em imagens multitemporais de sensoriamento remoto. Em lugar de classificar os pixels de imagens que cobrem uma cena, em duas classes exaustivas e mutuamente excludentes (mudança, não-mudança), propõe-se adotar uma abordagem do tipo fuzzy, na qual são estimados os graus de pertinência às classes mudança e não-mudança. Com este objetivo adota-se aqui uma abordagem em nível de sub-pixel na estimação dos graus de pertinência para cada pixel. Esta abordagem se mostra mais adequada para fins de modelagem do que ocorre em cenas naturais, onde as alterações que acontecem ao longo de um período de tempo tendem a apresentar uma variação contínua em lugar de discreta. Em uma segunda etapa, os graus de pertinência estimados recebem um ajustamento adicional por meio da introdução de informações de contexto espacial. A metodologia proposta foi testada por meio de três experimentos, um empregando uma imagem sintética e dois utilizando imagens reais. A partir da análise quantitativa dos resultados e comparação com estudos semelhantes, comprova-se a adequação da metodologia proposta. === In this dissertation it is proposed a new methodology to land use change detection in remote sensing multitemporal image data. Rather than applying a rigid labeling of the pixels in the image data into two classes (change, no-change), we propose estimating the degrees of membership to classes change and no-change in a fuzzy-like fashion. To this end, a sub-pixel approach is implemented to detect the degree of change in every pixel. This methodology aims at modeling natural scenes in a more realistic way, since changes in natural scenes tend to occur in a continuum rather than in a sharp distinctive way. In a second step, the estimated values for the degrees of membership are further refined by means of spatial context information. Three experiments were performed to test the proposed methodology, one employing synthetic data and two using real image data. From the quantitative analysis of the results and from similar studies we can prove the adequacy of the proposed methodology.