Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes

Os sistemas de transporte público por ônibus têm sido cada vez mais relevantes para o desenvolvimento das cidades. Técnicas para melhorar o planejamento e o controle da operação diária dos serviços de ônibus apresentaram melhorias significativas ao longo dos anos, e a previsão do tempo de viagem des...

Full description

Bibliographic Details
Main Author: Michel, Fernando Dutra
Other Authors: Cybis, Helena Beatriz Bettella
Format: Others
Language:Portuguese
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10183/178365
id ndltd-IBICT-oai-lume56.ufrgs.br-10183-178365
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Transporte coletivo urbano
Ônibus
Tempo de viagem
Bus travel time
Recurrent Neural Networks
Public transport systems
Time-space trajectories
spellingShingle Transporte coletivo urbano
Ônibus
Tempo de viagem
Bus travel time
Recurrent Neural Networks
Public transport systems
Time-space trajectories
Michel, Fernando Dutra
Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes
description Os sistemas de transporte público por ônibus têm sido cada vez mais relevantes para o desenvolvimento das cidades. Técnicas para melhorar o planejamento e o controle da operação diária dos serviços de ônibus apresentaram melhorias significativas ao longo dos anos, e a previsão do tempo de viagem desempenha um importante papel no planejamento e nas estratégias da operação diária. A antecipação dos tempos de viagem ajuda os planejadores e controladores a evitar os vários problemas que surgem durante a operação diária da linha de ônibus. Ela também permite manter os usuários informados para que eles possam planejar com antecedência a sua viagem. Vários estudos relacionados à previsão do tempo de viagem podem ser encontrados na literatura. Devido a sua dificuldade intrínseca, o problema foi abordado por diferentes técnicas. Resultados numéricos de estudos demonstram o potencial uso de redes neurais em relação a outras técnicas. No entanto, a literatura não apresenta aplicações que incorporem uma retroalimentação das informações contidas em séries temporais, como é feito por redes neuronais recorrentes. A maioria dos estudos na literatura tem sido realizada com dados de cidades específicas e com linhas de ônibus com paradas fixas. A situação que surge em linhas de ônibus sem paradas fixas operadas com micro-ônibus apresenta uma dinâmica diferente dos estudos de caso da literatura Além disso, os estudos existentes não usam o gráfico de marcha como um instrumento de apoio para a previsão do tempo de viagem em ônibus. Nesta tese, estuda-se o problema da previsão do tempo de viagem para linhas de micro-ônibus sem paradas fixas, utilizando as informações básicas do gráfico de marcha. O modelo proposto é baseado em redes neurais recorrentes. Os dados de entrada incluem: (i) a hora de início da viagem do ônibus, (ii) sua posição atual em coordenadas GPS, (iii) o tempo atual e (iv) a distância percorrida após um minuto. As redes são treinadas com dados de uma linha de micro-ônibus da cidade de Porto Alegre, Brasil. Os dados correspondem ao ano de 2015. Os modelos fornecem previsões para a distância percorrida minuto a minuto e para uma janela de tempo de 30 minutos. O modelo desenvolvido foi treinado com um conjunto abrangente de dados de dias úteis, incluindo períodos de pico e fora de pico. Os dados de treinamento não desconsideraram informações de qualquer dia devido à ocorrência de eventos especiais. Concluiu-se que os modelos de redes neurais recorrentes desenvolvidos são capazes de absorver a dinâmica do movimento dos micro-ônibus. A informação produzida apresenta um nível adequado de precisão a ser utilizado para informar os usuários. Também é adequada para planejadores e controladores da operação, pois pode ajudar a identificar situações problemáticas em janelas de tempo futuras. === Public transport systems by bus have been increasingly relevant for the development of cities. Techniques to improve planning and control of daily operation of bus services presented significant improvements along the years, and travel time forecast plays an important hole in both planning and daily operation strategies. Travel times anticipation helps planners and controllers to anticipate the various issues that arise during the daily bus line operation. It also allows keeping users informed, so they can plan in advance for their trip. Several studies related to travel time prediction can be found in the literature. Due to its intrinsic difficulty, the problem has been addressed by different techniques. Numerical results from studies demonstrate the potential use of neural networks in relation to other techniques. However, the literature does not present applications that incorporate a feedback of the information contained in time series as it is done by recurrent neural networks. Most of the studies in the literature have been conducted with data from specific cities and buses lines with fixed stops. The situation that arises in bus lines without fixed stops operated with microbuses present a different dynamics from the literature case studies. In addition, existing studies do not use time-space trajectories as a supporting instrument for bus travel time prediction. In this thesis we study the problem of travel time prediction for microbus lines without fixed stops using the basic information of the time-space trajectories The proposed model is based on recurrent neural networks. The input data includes: (i) the start time of the bus trip, (ii) its current position in GPS coordinates, (iii) the current time and (iv) distance travelled after one minute. The networks are trained with data from a microbus line from the city of Porto Alegre, Brazil. Data corresponds to the year 2015. The model provide forecasts for distance travelled minute by minute, and for a time window of 30 minutes. The developed models were trained with a comprehensive set of data from working days including peak and off-peak periods. The training data did not disregard information from any day due to occurrence of special events. It was concluded that the recurrent neural network model developed is capable of absorbing the dynamics of the microbuses movement. The information produced present an adequate level of precision to be used for users information. It is also adequate for planners and operation controllers as it can help to identify problematic situations in future time windows.
author2 Cybis, Helena Beatriz Bettella
author_facet Cybis, Helena Beatriz Bettella
Michel, Fernando Dutra
author Michel, Fernando Dutra
author_sort Michel, Fernando Dutra
title Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes
title_short Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes
title_full Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes
title_fullStr Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes
title_full_unstemmed Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes
title_sort previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes
publishDate 2018
url http://hdl.handle.net/10183/178365
work_keys_str_mv AT michelfernandodutra previsaodotempodeviagensdetransporteseletivosemparadafixaatravesderedesneuraisartificiaisrecorrentes
_version_ 1718756412799057920
spelling ndltd-IBICT-oai-lume56.ufrgs.br-10183-1783652018-09-30T04:27:27Z Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes Michel, Fernando Dutra Cybis, Helena Beatriz Bettella Transporte coletivo urbano Ônibus Tempo de viagem Bus travel time Recurrent Neural Networks Public transport systems Time-space trajectories Os sistemas de transporte público por ônibus têm sido cada vez mais relevantes para o desenvolvimento das cidades. Técnicas para melhorar o planejamento e o controle da operação diária dos serviços de ônibus apresentaram melhorias significativas ao longo dos anos, e a previsão do tempo de viagem desempenha um importante papel no planejamento e nas estratégias da operação diária. A antecipação dos tempos de viagem ajuda os planejadores e controladores a evitar os vários problemas que surgem durante a operação diária da linha de ônibus. Ela também permite manter os usuários informados para que eles possam planejar com antecedência a sua viagem. Vários estudos relacionados à previsão do tempo de viagem podem ser encontrados na literatura. Devido a sua dificuldade intrínseca, o problema foi abordado por diferentes técnicas. Resultados numéricos de estudos demonstram o potencial uso de redes neurais em relação a outras técnicas. No entanto, a literatura não apresenta aplicações que incorporem uma retroalimentação das informações contidas em séries temporais, como é feito por redes neuronais recorrentes. A maioria dos estudos na literatura tem sido realizada com dados de cidades específicas e com linhas de ônibus com paradas fixas. A situação que surge em linhas de ônibus sem paradas fixas operadas com micro-ônibus apresenta uma dinâmica diferente dos estudos de caso da literatura Além disso, os estudos existentes não usam o gráfico de marcha como um instrumento de apoio para a previsão do tempo de viagem em ônibus. Nesta tese, estuda-se o problema da previsão do tempo de viagem para linhas de micro-ônibus sem paradas fixas, utilizando as informações básicas do gráfico de marcha. O modelo proposto é baseado em redes neurais recorrentes. Os dados de entrada incluem: (i) a hora de início da viagem do ônibus, (ii) sua posição atual em coordenadas GPS, (iii) o tempo atual e (iv) a distância percorrida após um minuto. As redes são treinadas com dados de uma linha de micro-ônibus da cidade de Porto Alegre, Brasil. Os dados correspondem ao ano de 2015. Os modelos fornecem previsões para a distância percorrida minuto a minuto e para uma janela de tempo de 30 minutos. O modelo desenvolvido foi treinado com um conjunto abrangente de dados de dias úteis, incluindo períodos de pico e fora de pico. Os dados de treinamento não desconsideraram informações de qualquer dia devido à ocorrência de eventos especiais. Concluiu-se que os modelos de redes neurais recorrentes desenvolvidos são capazes de absorver a dinâmica do movimento dos micro-ônibus. A informação produzida apresenta um nível adequado de precisão a ser utilizado para informar os usuários. Também é adequada para planejadores e controladores da operação, pois pode ajudar a identificar situações problemáticas em janelas de tempo futuras. Public transport systems by bus have been increasingly relevant for the development of cities. Techniques to improve planning and control of daily operation of bus services presented significant improvements along the years, and travel time forecast plays an important hole in both planning and daily operation strategies. Travel times anticipation helps planners and controllers to anticipate the various issues that arise during the daily bus line operation. It also allows keeping users informed, so they can plan in advance for their trip. Several studies related to travel time prediction can be found in the literature. Due to its intrinsic difficulty, the problem has been addressed by different techniques. Numerical results from studies demonstrate the potential use of neural networks in relation to other techniques. However, the literature does not present applications that incorporate a feedback of the information contained in time series as it is done by recurrent neural networks. Most of the studies in the literature have been conducted with data from specific cities and buses lines with fixed stops. The situation that arises in bus lines without fixed stops operated with microbuses present a different dynamics from the literature case studies. In addition, existing studies do not use time-space trajectories as a supporting instrument for bus travel time prediction. In this thesis we study the problem of travel time prediction for microbus lines without fixed stops using the basic information of the time-space trajectories The proposed model is based on recurrent neural networks. The input data includes: (i) the start time of the bus trip, (ii) its current position in GPS coordinates, (iii) the current time and (iv) distance travelled after one minute. The networks are trained with data from a microbus line from the city of Porto Alegre, Brazil. Data corresponds to the year 2015. The model provide forecasts for distance travelled minute by minute, and for a time window of 30 minutes. The developed models were trained with a comprehensive set of data from working days including peak and off-peak periods. The training data did not disregard information from any day due to occurrence of special events. It was concluded that the recurrent neural network model developed is capable of absorbing the dynamics of the microbuses movement. The information produced present an adequate level of precision to be used for users information. It is also adequate for planners and operation controllers as it can help to identify problematic situations in future time windows. 2018-05-17T02:26:22Z 2017 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/10183/178365 001064925 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS