Gerenciamento e autenticação de identidades digitais usando feições faciais

Em nossa vida diária, são utilizadas identidades digitais (IDDs) para acessar contas de e-mail, bancos e lojas virtuais, locais restritos, computadores compartilhados, e outros. Garantir que apenas usuários autorizados tenham o acesso permitido é um aspecto fundamental no desenvolvimento destas apli...

Full description

Bibliographic Details
Main Author: Ribeiro, Matheus Antônio Corrêa
Other Authors: Scharcanski, Jacob
Format: Others
Language:Portuguese
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10183/15740
id ndltd-IBICT-oai-lume56.ufrgs.br-10183-15740
record_format oai_dc
spelling ndltd-IBICT-oai-lume56.ufrgs.br-10183-157402018-09-30T04:06:13Z Gerenciamento e autenticação de identidades digitais usando feições faciais Ribeiro, Matheus Antônio Corrêa Scharcanski, Jacob Schuck Junior, Adalberto Biometria Identidade digital Processamento de imagens Imagem digital Access control Biometric authentication Biometrics Identity management systems Facial features User modeling Em nossa vida diária, são utilizadas identidades digitais (IDDs) para acessar contas de e-mail, bancos e lojas virtuais, locais restritos, computadores compartilhados, e outros. Garantir que apenas usuários autorizados tenham o acesso permitido é um aspecto fundamental no desenvolvimento destas aplicações. Atualmente, os métodos de controle de acesso simples como senhas ou números de identificação pessoal não devem ser considerados suficientemente seguros, já que um impostor pode conseguir estas informações sem o conhecimento do usuário. Ainda, no caso de utilização de dispositivos físicos como cartões de identificação, estes podem ser roubados ou forjados. Para tornar estes sistemas mais confiáveis, técnicas de autenticação de identidades utilizando múltiplas verificações são propostas. A utilização de características biométricas surge como a alternativa mais confiável para tratar este problema, pois são, teoricamente, únicas para cada pessoa. Contudo, algumas características biométricas como a aparência facial podem variar com o tempo, implicando em um grande desafio para os sistemas de reconhecimento facial. Neste trabalho é combinado o acesso tradicional por senha com a análise da face para realizar a autenticação. Um método de aprendizagem supervisionada é apresentado e sua adaptação é baseada na melhora contínua dos modelos faciais, que são representados por misturas de gaussianas. Os resultados experimentais, obtidos sobre um conjunto de teste reduzido, são encorajadores, com 98% de identificação correta dos usuários e custo computacional relativamente baixo. Ainda, a comparação com um método apresentado na literatura indicou vantagens do método proposto quando usado como um pré-selecionador de faces. In our daily life, we use digital identities (DIDs) to access e-mails, e-banks, e-shops, physical environments, shared computers, and so on. Guarantee that only authorized users are granted access is an important aspect in the development of such applications. Nowadays, the simple access control methods like passwords or personal identification numbers can not be considered secure enough, because an impostor can obtain and use these information without user knowledge. Also, physical devices like ID cards can be stolen. To make these systems more reliable, multimodal DID authentication techniques combining different verification steps are proposed. Biometric features appears as one of the most reliable alternatives to deal with this problem because, theoretically, they are unique for each person. Nevertheless, some biometric features like face appearances may change in time, posing a serious challenge for a face recognition system. In this thesis work, we use the traditional password access combined with human face analysis to perform the authentication task. An intuitive supervised appearance learning method is presented, and its adaptation is based on continuously improving face models represented using the Gaussian mixture modeling approach. The experimental results over a reduced test set show encouraging results, with 98% of the users correctly identified, with a relatively small computational effort. Still, the comparison with a method presented in the literature indicated advantages of the proposed method when used as a pre-selector of faces. 2009-05-08T04:12:52Z 2008 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/15740 000690984 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Biometria
Identidade digital
Processamento de imagens
Imagem digital
Access control
Biometric authentication
Biometrics
Identity management systems
Facial features
User modeling
spellingShingle Biometria
Identidade digital
Processamento de imagens
Imagem digital
Access control
Biometric authentication
Biometrics
Identity management systems
Facial features
User modeling
Ribeiro, Matheus Antônio Corrêa
Gerenciamento e autenticação de identidades digitais usando feições faciais
description Em nossa vida diária, são utilizadas identidades digitais (IDDs) para acessar contas de e-mail, bancos e lojas virtuais, locais restritos, computadores compartilhados, e outros. Garantir que apenas usuários autorizados tenham o acesso permitido é um aspecto fundamental no desenvolvimento destas aplicações. Atualmente, os métodos de controle de acesso simples como senhas ou números de identificação pessoal não devem ser considerados suficientemente seguros, já que um impostor pode conseguir estas informações sem o conhecimento do usuário. Ainda, no caso de utilização de dispositivos físicos como cartões de identificação, estes podem ser roubados ou forjados. Para tornar estes sistemas mais confiáveis, técnicas de autenticação de identidades utilizando múltiplas verificações são propostas. A utilização de características biométricas surge como a alternativa mais confiável para tratar este problema, pois são, teoricamente, únicas para cada pessoa. Contudo, algumas características biométricas como a aparência facial podem variar com o tempo, implicando em um grande desafio para os sistemas de reconhecimento facial. Neste trabalho é combinado o acesso tradicional por senha com a análise da face para realizar a autenticação. Um método de aprendizagem supervisionada é apresentado e sua adaptação é baseada na melhora contínua dos modelos faciais, que são representados por misturas de gaussianas. Os resultados experimentais, obtidos sobre um conjunto de teste reduzido, são encorajadores, com 98% de identificação correta dos usuários e custo computacional relativamente baixo. Ainda, a comparação com um método apresentado na literatura indicou vantagens do método proposto quando usado como um pré-selecionador de faces. === In our daily life, we use digital identities (DIDs) to access e-mails, e-banks, e-shops, physical environments, shared computers, and so on. Guarantee that only authorized users are granted access is an important aspect in the development of such applications. Nowadays, the simple access control methods like passwords or personal identification numbers can not be considered secure enough, because an impostor can obtain and use these information without user knowledge. Also, physical devices like ID cards can be stolen. To make these systems more reliable, multimodal DID authentication techniques combining different verification steps are proposed. Biometric features appears as one of the most reliable alternatives to deal with this problem because, theoretically, they are unique for each person. Nevertheless, some biometric features like face appearances may change in time, posing a serious challenge for a face recognition system. In this thesis work, we use the traditional password access combined with human face analysis to perform the authentication task. An intuitive supervised appearance learning method is presented, and its adaptation is based on continuously improving face models represented using the Gaussian mixture modeling approach. The experimental results over a reduced test set show encouraging results, with 98% of the users correctly identified, with a relatively small computational effort. Still, the comparison with a method presented in the literature indicated advantages of the proposed method when used as a pre-selector of faces.
author2 Scharcanski, Jacob
author_facet Scharcanski, Jacob
Ribeiro, Matheus Antônio Corrêa
author Ribeiro, Matheus Antônio Corrêa
author_sort Ribeiro, Matheus Antônio Corrêa
title Gerenciamento e autenticação de identidades digitais usando feições faciais
title_short Gerenciamento e autenticação de identidades digitais usando feições faciais
title_full Gerenciamento e autenticação de identidades digitais usando feições faciais
title_fullStr Gerenciamento e autenticação de identidades digitais usando feições faciais
title_full_unstemmed Gerenciamento e autenticação de identidades digitais usando feições faciais
title_sort gerenciamento e autenticação de identidades digitais usando feições faciais
publishDate 2009
url http://hdl.handle.net/10183/15740
work_keys_str_mv AT ribeiromatheusantoniocorrea gerenciamentoeautenticacaodeidentidadesdigitaisusandofeicoesfaciais
_version_ 1718747887231303680