Distinção de grupos linguísticos através de desempenho da linguagem

A aquisição e o desempenho de linguagem humana é um processo pelo qual todas as pessoas passam. No entanto, esse processo não é completamente entendido, o que gera amplo espaço para pesquisa nessa área. Além disso, mesmo após o processo de aquisição da linguagem pela criança estar completo, ainda nã...

Full description

Bibliographic Details
Main Author: Wilkens, Rodrigo Souza
Other Authors: Villavicencio, Aline
Format: Others
Language:Portuguese
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10183/150040
Description
Summary:A aquisição e o desempenho de linguagem humana é um processo pelo qual todas as pessoas passam. No entanto, esse processo não é completamente entendido, o que gera amplo espaço para pesquisa nessa área. Além disso, mesmo após o processo de aquisição da linguagem pela criança estar completo, ainda não há garantia de domínio da língua em suas diferentes modalidades, especialmente de leitura e escrita. Recentemente, em 2016, divulgou-se que 49,3% dos estudantes brasileiros não possuem proficiência de compreensão de leitura plena em português. Isso é particularmente importante ao considerarmos a quantidade de textos disponíveis, mas não acessíveis a pessoas com diferentes tipos de problemas de proficiência na língua. Sob o ponto de vista computacional, há estudos que visam modelar os processos de aquisição da linguagem e medir o nível do falante, leitor ou redator. Em vista disso, neste trabalho propomos uma abordagem computacional independente de idioma para modelar o nível de desenvolvimento linguístico de diferentes tipos de usuários da língua, de crianças e adultos, sendo a nossa proposta fortemente baseada em características linguísticas. Essas características são dependentes de corpora orais transcritos, no segmento de crianças, e de corpora escritos, no segmento de adultos. Para alcançar esse modelo abrangente, são considerados como objetivos a identificação de atributos e valores que diferenciam os níveis de desenvolvimento da linguagem do indivíduo, assim como o desenvolvimento de um modelo capaz de indicá-los. Para a identificação dos atributos, utilizamos métodos baseados em estatística, como o teste de hipóteses e divergência de distribuição. A fim de comprovar a abrangência da abordagem, realizamos experimentos com os corpora que espelham diferentes etapas do desenvolvimento da linguagem humana: (1) etapa de aquisição da linguagem oral de pela criança e (2) etapa pós aquisição, através da percepção de complexidade da linguagem escrita. Como resultados, obtivemos um grande conjunto anotado de dados sobre aquisição e desempenho de linguagem que podem contribuir para outros estudos. Assim como um perfil de atributos para os vários níveis de desenvolvimento. Também destacamos como resultados, os modelos computacionais que identificam textos quanto ao nível de desenvolvimento de linguagem. Em especial, o são resultados do trabalho o modelo de identificação de palavras complexas, que ultrapassou o estado da arte para o corpus estudado, e o modelo de identificação de idade de crianças que ultrapassou os baselines utilizados, incluindo uma medida clássica de desenvolvimento linguístico. === Language acquisition and language performance is a process by which all the people experience. However, this process is not completely understood, which creates room for research in this area. Moreover, even after the acquisition process by a child is completed, there is still no guarantee of language proficiency in different modalities, specially reading and writing. Recently, in 2016, OECD/PIAAC released that 49,3% of Brazilian students do not have written and read proficiency in Portuguese. This is more important when we take into account the large number of available text, but they are not accessible by people with different types of language proficiency issues. In computational point of view, there are some studies which aim to model the language acquisition process and measure the speaker level. For that, we propose an computational approach independent of language to model language development level of different types of language users, children and adults. In that sense our proposal is highly based on linguistics features. Those features dependents of transcript oral corpora from children and adults. To achieve this model, we considered aim to identify attributes and values able to differentiate between leves of development by an individual, as well the desenvolvimento of a model able to indicate them. The attribute identification are based on statistical methods such as hypothesis testing and divergence distribution. Aiming to validate our approach, we performed experiments with the corpora that reflect at different stages of development of human language: (1) oral language acquisition by a child and (2) post-acquisition stage, through the perception of difficulty of written language. With this work, we obtained a large corpus of annotated language acquisition data that can contribute to the acquisition of other studies. We also build an attribute profile of the development levels. From all of our results we highlight the computer models that identify texts and language development level. In particular, the complex word identification model that exceeded the state of the art for the studied corpus, and the children age identifier model, who exceeded the baselines, including a classic measure of language development.