A study of the use of natural language processing for conversational agents
linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com al...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10183/142158 |
id |
ndltd-IBICT-oai-lume56.ufrgs.br-10183-142158 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Processamento : Linguagem natural Agentes inteligentes Inteligência artificial Natural language processing Conversational agents Natural language understanding Parser Combinatory categorial grammar Grammar acquisition Portuguese |
spellingShingle |
Processamento : Linguagem natural Agentes inteligentes Inteligência artificial Natural language processing Conversational agents Natural language understanding Parser Combinatory categorial grammar Grammar acquisition Portuguese Wilkens, Rodrigo Souza A study of the use of natural language processing for conversational agents |
description |
linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com algum grau de capacidade de linguagem desenvolvidos, o chatterbot Eliza é, provavelmente, o primeiro sistema com foco em diálogo. Com o objetivo de tornar a interação mais interessante e útil para o usuário há outras aplicações alem de chatterbots, como agentes conversacionais. Estes agentes geralmente possuem, em algum grau, propriedades como: corpo (com estados cognitivos, incluindo crenças, desejos e intenções ou objetivos); incorporação interativa no mundo real ou virtual (incluindo percepções de eventos, comunicação, habilidade de manipular o mundo e comunicar com outros agentes); e comportamento similar ao humano (incluindo habilidades afetivas). Este tipo de agente tem sido chamado de diversos nomes como agentes animados ou agentes conversacionais incorporados. Um sistema de diálogo possui seis componentes básicos. (1) O componente de reconhecimento de fala que é responsável por traduzir a fala do usuário em texto. (2) O componente de entendimento de linguagem natural que produz uma representação semântica adequada para diálogos, normalmente utilizando gramáticas e ontologias. (3) O gerenciador de tarefa que escolhe os conceitos a serem expressos ao usuário. (4) O componente de geração de linguagem natural que define como expressar estes conceitos em palavras. (5) O gerenciador de diálogo controla a estrutura do diálogo. (6) O sintetizador de voz é responsável por traduzir a resposta do agente em fala. No entanto, não há consenso sobre os recursos necessários para desenvolver agentes conversacionais e a dificuldade envolvida nisso (especialmente em línguas com poucos recursos disponíveis). Este trabalho foca na influência dos componentes de linguagem natural (entendimento e gerência de diálogo) e analisa em especial o uso de sistemas de análise sintática (parser) como parte do desenvolvimento de agentes conversacionais com habilidades de linguagem mais flexível. Este trabalho analisa quais os recursos do analisador sintático contribuem para agentes conversacionais e aborda como os desenvolver, tendo como língua alvo o português (uma língua com poucos recursos disponíveis). Para isto, analisamos as abordagens de entendimento de linguagem natural e identificamos as abordagens de análise sintática que oferecem um bom desempenho. Baseados nesta análise, desenvolvemos um protótipo para avaliar o impacto do uso de analisador sintático em um agente conversacional. === Language is a mark of humanity and conscience, with the conversation (or dialogue) as one of the most fundamental manners of communication that we learn as children. Therefore one way to make a computer more attractive for interaction with users is through the use of natural language. Among the systems with some degree of language capabilities developed, the Eliza chatterbot is probably the first with a focus on dialogue. In order to make the interaction more interesting and useful to the user there are other approaches besides chatterbots, like conversational agents. These agents generally have, to some degree, properties like: a body (with cognitive states, including beliefs, desires and intentions or objectives); an interactive incorporation in the real or virtual world (including perception of events, communication, ability to manipulate the world and communicate with others); and behavior similar to a human (including affective abilities). This type of agents has been called by several terms, including animated agents or embedded conversational agents (ECA). A dialogue system has six basic components. (1) The speech recognition component is responsible for translating the user’s speech into text. (2) The Natural Language Understanding component produces a semantic representation suitable for dialogues, usually using grammars and ontologies. (3) The Task Manager chooses the concepts to be expressed to the user. (4) The Natural Language Generation component defines how to express these concepts in words. (5) The dialog manager controls the structure of the dialogue. (6) The synthesizer is responsible for translating the agents answer into speech. However, there is no consensus about the necessary resources for developing conversational agents and the difficulties involved (especially in resource-poor languages). This work focuses on the influence of natural language components (dialogue understander and manager) and analyses, in particular the use of parsing systems as part of developing conversational agents with more flexible language capabilities. This work analyses what kind of parsing resources contributes to conversational agents and discusses how to develop them targeting Portuguese, which is a resource-poor language. To do so we analyze approaches to the understanding of natural language, and identify parsing approaches that offer good performance, based on which we develop a prototype to evaluate the impact of using a parser in a conversational agent. |
author2 |
Villavicencio, Aline |
author_facet |
Villavicencio, Aline Wilkens, Rodrigo Souza |
author |
Wilkens, Rodrigo Souza |
author_sort |
Wilkens, Rodrigo Souza |
title |
A study of the use of natural language processing for conversational agents |
title_short |
A study of the use of natural language processing for conversational agents |
title_full |
A study of the use of natural language processing for conversational agents |
title_fullStr |
A study of the use of natural language processing for conversational agents |
title_full_unstemmed |
A study of the use of natural language processing for conversational agents |
title_sort |
study of the use of natural language processing for conversational agents |
publishDate |
2016 |
url |
http://hdl.handle.net/10183/142158 |
work_keys_str_mv |
AT wilkensrodrigosouza astudyoftheuseofnaturallanguageprocessingforconversationalagents AT wilkensrodrigosouza studyoftheuseofnaturallanguageprocessingforconversationalagents |
_version_ |
1718754280639299584 |
spelling |
ndltd-IBICT-oai-lume56.ufrgs.br-10183-1421582018-09-30T04:22:16Z A study of the use of natural language processing for conversational agents Wilkens, Rodrigo Souza Villavicencio, Aline Vicari, Rosa Maria Processamento : Linguagem natural Agentes inteligentes Inteligência artificial Natural language processing Conversational agents Natural language understanding Parser Combinatory categorial grammar Grammar acquisition Portuguese linguagem é uma marca da humanidade e da consciência, sendo a conversação (ou diálogo) uma das maneiras de comunicacão mais fundamentais que aprendemos quando crianças. Por isso uma forma de fazer um computador mais atrativo para interação com usuários é usando linguagem natural. Dos sistemas com algum grau de capacidade de linguagem desenvolvidos, o chatterbot Eliza é, provavelmente, o primeiro sistema com foco em diálogo. Com o objetivo de tornar a interação mais interessante e útil para o usuário há outras aplicações alem de chatterbots, como agentes conversacionais. Estes agentes geralmente possuem, em algum grau, propriedades como: corpo (com estados cognitivos, incluindo crenças, desejos e intenções ou objetivos); incorporação interativa no mundo real ou virtual (incluindo percepções de eventos, comunicação, habilidade de manipular o mundo e comunicar com outros agentes); e comportamento similar ao humano (incluindo habilidades afetivas). Este tipo de agente tem sido chamado de diversos nomes como agentes animados ou agentes conversacionais incorporados. Um sistema de diálogo possui seis componentes básicos. (1) O componente de reconhecimento de fala que é responsável por traduzir a fala do usuário em texto. (2) O componente de entendimento de linguagem natural que produz uma representação semântica adequada para diálogos, normalmente utilizando gramáticas e ontologias. (3) O gerenciador de tarefa que escolhe os conceitos a serem expressos ao usuário. (4) O componente de geração de linguagem natural que define como expressar estes conceitos em palavras. (5) O gerenciador de diálogo controla a estrutura do diálogo. (6) O sintetizador de voz é responsável por traduzir a resposta do agente em fala. No entanto, não há consenso sobre os recursos necessários para desenvolver agentes conversacionais e a dificuldade envolvida nisso (especialmente em línguas com poucos recursos disponíveis). Este trabalho foca na influência dos componentes de linguagem natural (entendimento e gerência de diálogo) e analisa em especial o uso de sistemas de análise sintática (parser) como parte do desenvolvimento de agentes conversacionais com habilidades de linguagem mais flexível. Este trabalho analisa quais os recursos do analisador sintático contribuem para agentes conversacionais e aborda como os desenvolver, tendo como língua alvo o português (uma língua com poucos recursos disponíveis). Para isto, analisamos as abordagens de entendimento de linguagem natural e identificamos as abordagens de análise sintática que oferecem um bom desempenho. Baseados nesta análise, desenvolvemos um protótipo para avaliar o impacto do uso de analisador sintático em um agente conversacional. Language is a mark of humanity and conscience, with the conversation (or dialogue) as one of the most fundamental manners of communication that we learn as children. Therefore one way to make a computer more attractive for interaction with users is through the use of natural language. Among the systems with some degree of language capabilities developed, the Eliza chatterbot is probably the first with a focus on dialogue. In order to make the interaction more interesting and useful to the user there are other approaches besides chatterbots, like conversational agents. These agents generally have, to some degree, properties like: a body (with cognitive states, including beliefs, desires and intentions or objectives); an interactive incorporation in the real or virtual world (including perception of events, communication, ability to manipulate the world and communicate with others); and behavior similar to a human (including affective abilities). This type of agents has been called by several terms, including animated agents or embedded conversational agents (ECA). A dialogue system has six basic components. (1) The speech recognition component is responsible for translating the user’s speech into text. (2) The Natural Language Understanding component produces a semantic representation suitable for dialogues, usually using grammars and ontologies. (3) The Task Manager chooses the concepts to be expressed to the user. (4) The Natural Language Generation component defines how to express these concepts in words. (5) The dialog manager controls the structure of the dialogue. (6) The synthesizer is responsible for translating the agents answer into speech. However, there is no consensus about the necessary resources for developing conversational agents and the difficulties involved (especially in resource-poor languages). This work focuses on the influence of natural language components (dialogue understander and manager) and analyses, in particular the use of parsing systems as part of developing conversational agents with more flexible language capabilities. This work analyses what kind of parsing resources contributes to conversational agents and discusses how to develop them targeting Portuguese, which is a resource-poor language. To do so we analyze approaches to the understanding of natural language, and identify parsing approaches that offer good performance, based on which we develop a prototype to evaluate the impact of using a parser in a conversational agent. 2016-05-28T02:09:32Z 2016 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/142158 000993303 eng info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS |