An ontology-driven evidence theory method for activity recognition

O reconhecimento de atividaes é vital no contexto dos ambientes inteligentes. Mesmo com a facilidade de acesso a sensores móveis baratos, reconhecer atividades continua sendo um problema difícil devido à incerteza nas leituras dos sensores e à complexidade das atividades. A teoria da evidência provê...

Full description

Bibliographic Details
Main Author: Rey, Vítor Fortes
Other Authors: Silva Junior, Edson Prestes e
Format: Others
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10183/134325
Description
Summary:O reconhecimento de atividaes é vital no contexto dos ambientes inteligentes. Mesmo com a facilidade de acesso a sensores móveis baratos, reconhecer atividades continua sendo um problema difícil devido à incerteza nas leituras dos sensores e à complexidade das atividades. A teoria da evidência provê um modelo de reconhecimento de atividades que detecta atividades mesmo na presença de incerteza nas leituras dos sensores, mas ainda não é capaz de modelar atividades complexas ou mudanças na configuração dos sensores ou do ambiente. Este trabalho propõe combinar abordagens baseadas em modelagem de conhecimento com a teoria da evidência, melhorando assim a construção dos modelos da última trazendo a reusabilidade, flexibilidade e semântica rica da primeira. === Activity recognition is a vital need in the field of ambient intelligence. It is essential for many internet of things applications including energy management, healthcare systems and home automation. But, even with the many cheap mobile sensors envisioned by the internet of things, activity recognition remains a hard problem. This is due to uncertainty in sensor readings and the complexity of activities themselves. Evidence theory models provide activity recognition even in the presence of uncertain sensor readings, but cannot yet model complex activities or dynamic changes in sensor and environment configurations. This work proposes combining knowledge-based approaches with evidence theory, improving the construction of evidence theory models for activity recognition by bringing reusability, flexibility and rich semantics.