Estimação do coeficiente de correlação de spearman ponderado

Para estimar a correlação de duas variáveis que não têm distribuição conjunta normal bivariada, a alternativa mais usual é o coeficiente de correlação de Spearman. Entretanto, quando os dados necessitam de ponderação na análise, como no caso de delineamentos amostrais complexos, não existe método de...

Full description

Bibliographic Details
Main Author: Bauer, Lidiane
Other Authors: Vigo, Álvaro
Format: Others
Language:Portuguese
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/10183/11499
id ndltd-IBICT-oai-lume56.ufrgs.br-10183-11499
record_format oai_dc
spelling ndltd-IBICT-oai-lume56.ufrgs.br-10183-114992018-09-30T04:03:53Z Estimação do coeficiente de correlação de spearman ponderado Bauer, Lidiane Vigo, Álvaro Epidemiologia Para estimar a correlação de duas variáveis que não têm distribuição conjunta normal bivariada, a alternativa mais usual é o coeficiente de correlação de Spearman. Entretanto, quando os dados necessitam de ponderação na análise, como no caso de delineamentos amostrais complexos, não existe método descrito na literatura para estimar essa correlação. Este artigo propõe dois métodos para este cenário e os compara via simulação Monte Carlo. O primeiro método, chamado de método da amostra expandida, consiste em replicar cada observação da amostra em número igual ao seu peso e calcular o coeficiente de Spearman na amostra expandida. No segundo método, o método dos postos, é estimado o coeficiente de correlação de Pearson ponderado nos postos das duas variáveis. Teste de hipóteses tradicional das estimativas produzidas pelos dois métodos também é abordado neste artigo. Os dois estimadores do coeficiente de Spearman ponderado explorados mostraram desempenhos muito semelhantes, com ausência de viés, pequena variabilidade e mesma eficiência. Entretanto, se recomenda estes métodos quando os dados são medidos em escala. Este trabalho também explora a estimação pontual do coeficiente de Pearson ponderado e estimação de intervalos de confiança bootstrap, quando a suposição de normalidade bivariada está violada. Sua principal vantagem é evitar potencial influência da expansão da amostra nos postos associados aos valores observados como ocorre com o coeficiente de Spearman. To estimate the correlation of two variables that don’t have bivariate normal distribution, the more usual alternative is the Spearman correlation coefficient. However, when the data need of weighting in the analysis like the complex sample surveys, there aren’t any methods for estimate this correlation in the literature. This paper proposes two methods for this framework and compares it through the Monte Carlo simulation. The first method which will be called of expanded sample method, consist of replied each observation from sample by its correspondent weight in it. In the second method, called of ranks methods, the ranks of the two variables are calculated, and then are estimated the weighted Pearson correlation coefficient. This work also explores another solution for making inference to the Pearson coefficient in the presence of weighting and violation of the assumption of normality, the bootstrap confidence interval. The two estimators proposed showed performance very similar, with or without bias and a little variability. However, a more current proceeding is to estimate the weighted Pearson correlation coefficient and to construct a bootstrap confidence interval, because in this way is unnecessary to know the joint distribution of the two variables. It is important to point out that to Pearson coefficient there is no loss of information in its calculation like in the Spearman coefficient, once in the last one are considerate just the ranks. 2008-01-12T05:10:27Z 2007 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/11499 000616112 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Epidemiologia
spellingShingle Epidemiologia
Bauer, Lidiane
Estimação do coeficiente de correlação de spearman ponderado
description Para estimar a correlação de duas variáveis que não têm distribuição conjunta normal bivariada, a alternativa mais usual é o coeficiente de correlação de Spearman. Entretanto, quando os dados necessitam de ponderação na análise, como no caso de delineamentos amostrais complexos, não existe método descrito na literatura para estimar essa correlação. Este artigo propõe dois métodos para este cenário e os compara via simulação Monte Carlo. O primeiro método, chamado de método da amostra expandida, consiste em replicar cada observação da amostra em número igual ao seu peso e calcular o coeficiente de Spearman na amostra expandida. No segundo método, o método dos postos, é estimado o coeficiente de correlação de Pearson ponderado nos postos das duas variáveis. Teste de hipóteses tradicional das estimativas produzidas pelos dois métodos também é abordado neste artigo. Os dois estimadores do coeficiente de Spearman ponderado explorados mostraram desempenhos muito semelhantes, com ausência de viés, pequena variabilidade e mesma eficiência. Entretanto, se recomenda estes métodos quando os dados são medidos em escala. Este trabalho também explora a estimação pontual do coeficiente de Pearson ponderado e estimação de intervalos de confiança bootstrap, quando a suposição de normalidade bivariada está violada. Sua principal vantagem é evitar potencial influência da expansão da amostra nos postos associados aos valores observados como ocorre com o coeficiente de Spearman. === To estimate the correlation of two variables that don’t have bivariate normal distribution, the more usual alternative is the Spearman correlation coefficient. However, when the data need of weighting in the analysis like the complex sample surveys, there aren’t any methods for estimate this correlation in the literature. This paper proposes two methods for this framework and compares it through the Monte Carlo simulation. The first method which will be called of expanded sample method, consist of replied each observation from sample by its correspondent weight in it. In the second method, called of ranks methods, the ranks of the two variables are calculated, and then are estimated the weighted Pearson correlation coefficient. This work also explores another solution for making inference to the Pearson coefficient in the presence of weighting and violation of the assumption of normality, the bootstrap confidence interval. The two estimators proposed showed performance very similar, with or without bias and a little variability. However, a more current proceeding is to estimate the weighted Pearson correlation coefficient and to construct a bootstrap confidence interval, because in this way is unnecessary to know the joint distribution of the two variables. It is important to point out that to Pearson coefficient there is no loss of information in its calculation like in the Spearman coefficient, once in the last one are considerate just the ranks.
author2 Vigo, Álvaro
author_facet Vigo, Álvaro
Bauer, Lidiane
author Bauer, Lidiane
author_sort Bauer, Lidiane
title Estimação do coeficiente de correlação de spearman ponderado
title_short Estimação do coeficiente de correlação de spearman ponderado
title_full Estimação do coeficiente de correlação de spearman ponderado
title_fullStr Estimação do coeficiente de correlação de spearman ponderado
title_full_unstemmed Estimação do coeficiente de correlação de spearman ponderado
title_sort estimação do coeficiente de correlação de spearman ponderado
publishDate 2008
url http://hdl.handle.net/10183/11499
work_keys_str_mv AT bauerlidiane estimacaodocoeficientedecorrelacaodespearmanponderado
_version_ 1718746817869381632