Reconhecimento facial tolerante à variação de pose utilizando uma câmera RGB-D de baixo custo

Reconhecer a identidade de seres humanos a partir de imagens digitais gravadas de suas faces é uma etapa importante para uma variedade de aplicações que incluem segurança de acesso, iteração humano computador, entretenimento digital, entre outras. Neste trabalho é proposto um novo método automático...

Full description

Bibliographic Details
Main Author: Zeni, Luis Felipe de Araujo
Other Authors: Scharcanski, Jacob
Format: Others
Language:Portuguese
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10183/101659
Description
Summary:Reconhecer a identidade de seres humanos a partir de imagens digitais gravadas de suas faces é uma etapa importante para uma variedade de aplicações que incluem segurança de acesso, iteração humano computador, entretenimento digital, entre outras. Neste trabalho é proposto um novo método automático para reconhecimento facial que utiliza simultaneamente a informação 2D e 3D de uma câmera RGB-D(Kinect). O método proposto utiliza a informação de cor da imagem 2D para localizar faces na cena, uma vez que uma face é localizada ela é devidamente recortada e normalizada para um padrão de tamanho e cor. Posteriormente com a informação de profundidade o método estima a pose da cabeça em relação com à câmera. Com faces recortadas e suas respectivas informações de pose, o método proposto treina um modelo de faces robusto à variação de poses e expressões propondo uma nova técnica automática que separa diferentes poses em diferentes modelos de faces. Com o modelo treinado o método é capaz de identificar se as pessoas utilizadas para aprender o modelo estão ou não presentes em novas imagens adquiridas, as quais o modelo não teve acesso na etapa de treinamento. Os experimentos realizados demonstram que o método proposto melhora consideravelmente o resultado de classificação em imagens reais com variação de pose e expressão. === Recognizing the identity of human beings from recorded digital images of their faces is important for a variety of applications, namely, security access, human computer interation, digital entertainment, etc. This dissertation proposes a new method for automatic face recognition that uses both 2D and 3D information of an RGB-D(Kinect) camera. The method uses the color information of the 2D image to locate faces in the scene, once a face is properly located it is cut and normalized to a standard size and color. Afterwards, using depth information the method estimates the pose of the head relative to the camera. With the normalized faces and their respective pose information, the proposed method trains a model of faces that is robust to pose and expressions using a new automatic technique that separates different poses in different models of faces. With the trained model, the method is able to identify whether people used to train the model are present or not in new acquired images, which the model had no access during the training phase. The experiments demonstrate that the proposed method considerably improves the result of classification in real images with varying pose and expression.