Ambiente de alto desempenho com alta exatidão para a resolução de problemas

Este trabalho visa a disponibilização de um ambiente de alto desempenho, do tipo cluster de computadores, com alta exatidão, obtida através da utilização da biblioteca C–XSC. A alta exatidão na solução de um problema é obtida através da realização de cálculos intermediários sem arredondamentos como...

Full description

Bibliographic Details
Main Author: Holbig, Carlos Amaral
Other Authors: Diverio, Tiaraju Asmuz
Format: Others
Language:Portuguese
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/10183/7277
Description
Summary:Este trabalho visa a disponibilização de um ambiente de alto desempenho, do tipo cluster de computadores, com alta exatidão, obtida através da utilização da biblioteca C–XSC. A alta exatidão na solução de um problema é obtida através da realização de cálculos intermediários sem arredondamentos como se fossem em precisão infinita. Ao final do cálculo, o resultado deve ser representado na máquina. O resultado exato real e o resultado representado diferem apenas por um único arredondamento. Esses cálculos em alta exatidão devem estar disponíveis para algumas operações aritméticas básicas, em especial as que possibilitam a realização de somatório e de produto escalar. Com isso, deseja-se utilizar o alto desempenho através de um ambiente de cluster onde se tem vários nodos executando tarefas ou cálculos. A comunicação será realizada por troca de mensagens usando a biblioteca de comunicação MPI. Para se obter a alta exatidão neste tipo de ambiente, extensões ou adaptações nos programas paralelos tiveram que ser disponibilizadas para garantir que a qualidade do resultado final realizado em um cluster, onde vários nodos colaboram para o resultado final do cálculo, mantivesse a mesma qualidade do resultado que é obtido em uma única máquina (ou nodo) de um ambiente de alta exatidão. Para validar o ambiente proposto foram realizados testes básicos abordando o cálculo do produto escalar, a multiplicação entre matrizes, a implementação de solvers intervalares para matrizes densas e bandas e a implementação de alguns métodos numéricos para a resolução de sistemas de equações lineares com a característica da alta exatidão. Destes testes foram realizadas análises e comparações a respeito do desempenho e da exatidão obtidos com e sem o uso da biblioteca C–XSC, tanto em programas seqüenciais como em programas paralelos. Com a conseqüente implementação dessas rotinas e métodos será aberto um vasto campo de pesquisa no que se refere ao estudo de aplicações reais de grande porte que necessitem durante a sua resolução (ou em parte dela) da realização de operações aritméticas com uma exatidão melhor do que a obtida usualmente pelas ferramentas computacionais tradicionais.