Summary: | É realizado um estudo da dinâmica de vigas segmentadas aplicáveis em microscopia de força atômica (AFM), utilizando os modelos de Euler-Bernoulli e de Timoshenko e uma metodologia introduzida na literatura para vigas segmentadas do tipo Euler-Bernoulli e de vigas uniformes do tipo Timoshenko com uso da resposta impulso distribuída e de respostas fundamentais concentradas. Um estudo da análise modal é realizado com modelos de vigas que incluem materiais piezoelétricos de uso em microscopia de força atômica. São assumidas condições de compatibilidade referentes ao deslocamento, rotação, momento fletor e cisalhamento nos pontos de descontinuidade. É observado que as frequências e os modos de vibração da viga segmentada são sensívieis às descontinuidades nos materiais e na geometria. Na obtenção de respostas forçadas, o método de Galerkin é utilizado para aproximar a resposta impulso distribuída com o uso de autofunções que satisfazem a propriedade dos modos normais. Apresentam-se resultados referentes a vigas bi e trissegmentadas, considerando parâmetros numéricos de teste e usados para vigas em AFM com materiais piezoelétricos. Os resultados modais obtidos neste trabalho são próximos daqueles encontrados na literatura. Vibrações forçadas foram obtidas considerando forçantes do tipo harmônico no tempo e com amplitude espacial dos tipos constante, concentrado e pulso. === This work studies the dynamics of multispan beams used in atomic force microscopy (AFM), considering the models of Euler-Bernoulli and Timoshenko, and applying the methodology introduced in the literature for Euler-Bernoulli segmented beams and uniform Timoshenko beams with the use of distributed impulse responses and concentrated fundamental responses. A study of modal analysis is performed with models of segmented beams, including piezoelectric materials of use in atomic force microscopy. We considered compatibility conditions with respect to the displacement, slope, flexure moment and shear at the points of discontinuity. It is observed that the frequencies and vibrating modes of the segmented beam are sensitive to material and geometric discontinuities. For obtaining forced responses, the Galerkin method is used to approximate the distributed impulse response with eigenfunctions that satisfy the normal mode property. We present results for the bi and tri segmented beams considering numerical testing and those employed for beams in AFM with piezoelectric materials. The modal results obtained in this work are close to those found in the literature. Forced responses were obtained by considering harmonic excitations with spatial amplitude for constant, localized and pulse types.
|