Técnicas de avaliação da confiabilidade em estruturas de concreto armado

Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análi...

Full description

Bibliographic Details
Main Author: Gomes, Herbert Martins
Other Authors: Awruch, Armando Miguel
Format: Others
Language:Portuguese
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/10183/3350
id ndltd-IBICT-oai-lume.ufrgs.br-10183-3350
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Estruturas de concreto armado : Confiabilidade
Elementos finitos
spellingShingle Estruturas de concreto armado : Confiabilidade
Elementos finitos
Gomes, Herbert Martins
Técnicas de avaliação da confiabilidade em estruturas de concreto armado
description Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al(1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes. === In this work special emphasis is given to uncertainties in the evaluation of the structural behavior, looking for a better representation of the system characteristics and quantification of the significance of these uncertainties in the design. It is confronted some existing classical reliability analysis techniques, such as the First Order Reliability Method (FORM), Direct Monte Carlo Simulation (MC) and Monte Carlo Simulation with Adaptive Importance Sampling (MCIS), and approximated techniques such as Response Surface (RS) and Artificial Neural Networks (ANN). It is highlighted, when possible, the advantages and shortcoming in applying these techniques in problems with increasing complexity. Problems with some explicit and implicit limit state functions formulations with material and load spatial variability, including stochastic fields, are analyzed. The reliability analysis of reinforced concrete structure problems is specially considered taking into account the spatial variability of the material properties. A finite element algorithm is proposed to model its main characteristics. It is developed a multidimensional non-Gaussian stochastic field generation model (independent of the finite element mesh). Some techniques to accelerate the structural evaluation, performed by any of the methods mentioned previously, are also implemented. The reliability analysis by the Response Surface technique is performed with the algorithm implemented by Rajashekhar et al (1993). The reliability analysis is also accomplished with Shao’s et al(1997) algorithm, which is implemented together with computer codes for neural network simulation with multilayer perceptrons and radial basis functions. It was observed that the direct simulation techniques have a low performance in complex problems. FORM, Response Surface and Neural Networks techniques are outstanding techniques, despite the loss of accuracy due to approximations characterizing these methods.
author2 Awruch, Armando Miguel
author_facet Awruch, Armando Miguel
Gomes, Herbert Martins
author Gomes, Herbert Martins
author_sort Gomes, Herbert Martins
title Técnicas de avaliação da confiabilidade em estruturas de concreto armado
title_short Técnicas de avaliação da confiabilidade em estruturas de concreto armado
title_full Técnicas de avaliação da confiabilidade em estruturas de concreto armado
title_fullStr Técnicas de avaliação da confiabilidade em estruturas de concreto armado
title_full_unstemmed Técnicas de avaliação da confiabilidade em estruturas de concreto armado
title_sort técnicas de avaliação da confiabilidade em estruturas de concreto armado
publishDate 2007
url http://hdl.handle.net/10183/3350
work_keys_str_mv AT gomesherbertmartins tecnicasdeavaliacaodaconfiabilidadeemestruturasdeconcretoarmado
_version_ 1718775339820253184
spelling ndltd-IBICT-oai-lume.ufrgs.br-10183-33502018-10-21T16:46:52Z Técnicas de avaliação da confiabilidade em estruturas de concreto armado Gomes, Herbert Martins Awruch, Armando Miguel Estruturas de concreto armado : Confiabilidade Elementos finitos Neste trabalho é dado ênfase à inclusão das incertezas na avaliação do comportamento estrutural, objetivando uma melhor representação das características do sistema e uma quantificação do significado destas incertezas no projeto. São feitas comparações entre as técnicas clássicas existentes de análise de confiabilidade, tais como FORM, Simulação Direta Monte Carlo (MC) e Simulação Monte Carlo com Amostragem por Importância Adaptativa (MCIS), e os métodos aproximados da Superfície de Resposta( RS) e de Redes Neurais Artificiais(ANN). Quando possível, as comparações são feitas salientando- se as vantagens e inconvenientes do uso de uma ou de outra técnica em problemas com complexidades crescentes. São analisadas desde formulações com funções de estado limite explícitas até formulações implícitas com variabilidade espacial de carregamento e propriedades dos materiais, incluindo campos estocásticos. É tratado, em especial, o problema da análise da confiabilidade de estruturas de concreto armado incluindo o efeito da variabilidade espacial de suas propriedades. Para tanto é proposto um modelo de elementos finitos para a representação do concreto armado que incorpora as principais características observadas neste material. Também foi desenvolvido um modelo para a geração de campos estocásticos multidimensionais não Gaussianos para as propriedades do material e que é independente da malha de elementos finitos, assim como implementadas técnicas para aceleração das avaliações estruturais presentes em qualquer das técnicas empregadas. Para o tratamento da confiabilidade através da técnica da Superfície de Resposta, o algoritmo desenvolvido por Rajashekhar et al(1993) foi implementado. Já para o tratamento através de Redes Neurais Artificias, foram desenvolvidos alguns códigos para a simulação de redes percéptron multicamada e redes com função de base radial e então implementados no algoritmo de avaliação de confiabilidade desenvolvido por Shao et al(1997). Em geral, observou-se que as técnicas de simulação tem desempenho bastante baixo em problemas mais complexos, sobressaindo-se a técnica de primeira ordem FORM e as técnicas aproximadas da Superfície de Resposta e de Redes Neurais Artificiais, embora com precisão prejudicada devido às aproximações presentes. In this work special emphasis is given to uncertainties in the evaluation of the structural behavior, looking for a better representation of the system characteristics and quantification of the significance of these uncertainties in the design. It is confronted some existing classical reliability analysis techniques, such as the First Order Reliability Method (FORM), Direct Monte Carlo Simulation (MC) and Monte Carlo Simulation with Adaptive Importance Sampling (MCIS), and approximated techniques such as Response Surface (RS) and Artificial Neural Networks (ANN). It is highlighted, when possible, the advantages and shortcoming in applying these techniques in problems with increasing complexity. Problems with some explicit and implicit limit state functions formulations with material and load spatial variability, including stochastic fields, are analyzed. The reliability analysis of reinforced concrete structure problems is specially considered taking into account the spatial variability of the material properties. A finite element algorithm is proposed to model its main characteristics. It is developed a multidimensional non-Gaussian stochastic field generation model (independent of the finite element mesh). Some techniques to accelerate the structural evaluation, performed by any of the methods mentioned previously, are also implemented. The reliability analysis by the Response Surface technique is performed with the algorithm implemented by Rajashekhar et al (1993). The reliability analysis is also accomplished with Shao’s et al(1997) algorithm, which is implemented together with computer codes for neural network simulation with multilayer perceptrons and radial basis functions. It was observed that the direct simulation techniques have a low performance in complex problems. FORM, Response Surface and Neural Networks techniques are outstanding techniques, despite the loss of accuracy due to approximations characterizing these methods. 2007-06-06T17:28:06Z 2001 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/10183/3350 000291911 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS