Alinhamento léxico utilizando técnicas híbridas discriminativas e de pós-processamento

O alinhamento léxico automático é uma tarefa essencial para as técnicas de tradução de máquina empíricas modernas. A abordagem gerativa não-supervisionado têm sido substituída recentemente por uma abordagem discriminativa supervisionada que facilite inclusão de conhecimento linguístico de uma divers...

Full description

Bibliographic Details
Main Author: Schreiner, Paulo
Other Authors: Villavicencio, Aline
Format: Others
Language:Portuguese
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10183/27658
Description
Summary:O alinhamento léxico automático é uma tarefa essencial para as técnicas de tradução de máquina empíricas modernas. A abordagem gerativa não-supervisionado têm sido substituída recentemente por uma abordagem discriminativa supervisionada que facilite inclusão de conhecimento linguístico de uma diversidade de fontes. Dentro deste contexto, este trabalho descreve uma série alinhadores léxicos discriminativos que incorporam heurísticas de pós-processamento com o objetivo de melhorar o desempenho dos mesmos para expressões multi-palavra, que constituem um dos desafios da área de processamento de linguagens naturais atualmente. A avaliação é realizada utilizando um gold-standard obtido a partir da anotação de um corpus paralelo de legendas de filmes. Os alinhadores propostos apresentam um desempenho superior tanto ao obtido por uma baseline quanto ao obtido por um alinhador gerativo do estado-da-arte (Giza++), tanto no caso geral quanto para as expressões foco do trabalho. === Lexical alignment is an essential task for modern empirical machine translation techniques. The unsupervised generative approach is being replaced by a supervised, discriminative one that considerably facilitates the inclusion of linguistic knowledge from several sources. Given this context, the present work describes a series of discriminative lexical aligners that incorporate post-processing heuristics with the goal of improving the quality of the alignments of multiword expressions, which is one of the major challanges in natural language processing today. The evaluation is conducted using a gold-standard obtained from a movie subtitle parallel corpus. The aligners proposed show an alignment quality that is superior both to our baseline and to a state-of-the-art generative aligner (Giza++), for the general case as well as for the expressions that are the focus of this work.