Merging meshes using dynamic regular triangulation

Malhas simpliciais são utilizadas em várias áreas da Computação Gráfica e Engenharia, como por exemplo, em vizualização, simulação, prototipação, além de outras aplicações. Este tipo de malha é, geralmente, utilizada como aproximações discretas de espaços contínuos, onde eles oferecem representações...

Full description

Bibliographic Details
Main Author: Silva, Luis Fernando Maia Santos
Other Authors: Comba, Joao Luiz Dihl
Format: Others
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10183/25512
Description
Summary:Malhas simpliciais são utilizadas em várias áreas da Computação Gráfica e Engenharia, como por exemplo, em vizualização, simulação, prototipação, além de outras aplicações. Este tipo de malha é, geralmente, utilizada como aproximações discretas de espaços contínuos, onde eles oferecem representações flexíveis e eficientes. Muito esforço é gasto visando gerar malhas de boa qualidade, porém, em alguns casos as malhas acabam sendo modificadas. Entretanto, este tipo de operação é geralmente custosa e inflexível, o que pode resultar na geraão de malhas bem diferentes das originais. A habilidade de manipular cenas dinâmicas revela-se um dos problemas mais desafiadores da computação gráfica. Este trabalho propõe um método alternativo para atualizar malhas simpliciais que vai além de mudanças geométricas e topológicas. Tal método explora uma das propriedade das Tringulações de Delaunay com Pesos, que permite a usá-las para definir implicitamente as relações de conectividade de uma malha. Ao contrário de manter as informações de conectividade explicitamente, a atual abordagem simplesmente armazena uma coleção de pesos associados a cada vértice. Além disso, criamos um algoritmo para calcular uma Tringulação de Delaunay com Pesos a partir de uma dada triangulação. O algoritmo consiste em uma busca em largura que atribui pesos aos vértices, e uma estratégia de de subdivisão para assegurar que a triangulação reconstruída será correspondente à original. Este método apresenta diversas aplicações e, em particular, permite a criação de um sistema simples de realizar combinação entre triangulações, que será ilustrada com exemplos em 2D e 3D. === Simplicial meshes are used in many fields of Computer Graphics and Engineering, for instance, in visualization, simulation, prototyping, among other applications. This kind of mesh is often used as discrete approximations of continuous spaces, where they offer flexible and efficient representations. Considerable effort is spent in generating good quality meshes, but in some applications the meshes can be modified over time. However, this kind of operation is often very expensive and inflexible, sometimes leading to results very different from the original meshes. The ability to handle dynamic scenes reveals itself as one of the most challenging problems in computer graphics. This work proposes an alternative technique for updating simplicial meshes that undergo geometric and topological changes. It explores the property that a Weighted Delaunay Triangulation (WDT) can be used to implicitly define the connectivity of a mesh. Instead of explicitly maintaining connectivity information, this approach simply keeps a collection of weights associated to each vertex. It consists of an algorithm to compute a WDT from any given triangulation, which relies on a breadth-first traversal to assign weights to vertices, and a subdivision strategy to ensure that the reconstructed triangulation conforms with the original one. This technique has many applications and, in particular, it allows for a very simple method of merging triangulations, which is illustrated with both 2D and 3d examples.