Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento
Unidades gráficas de processamento, mais conhecidas como GPUs (Graphics Processing Unit), são dispositivos que possuem um grande poder de processamento paralelo com respectivo baixo custo de operação. Sua capacidade de simultaneamente manipular grandes blocos de memória a credencia a ser utilizada n...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10183/140441 |
id |
ndltd-IBICT-oai-lume.ufrgs.br-10183-140441 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Microeletrônica Processamento : Imagem Simulação computacional GPU Parallel processing High performance Fault tolerance |
spellingShingle |
Microeletrônica Processamento : Imagem Simulação computacional GPU Parallel processing High performance Fault tolerance Nedel, Werner Mauricio Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento |
description |
Unidades gráficas de processamento, mais conhecidas como GPUs (Graphics Processing Unit), são dispositivos que possuem um grande poder de processamento paralelo com respectivo baixo custo de operação. Sua capacidade de simultaneamente manipular grandes blocos de memória a credencia a ser utilizada nas mais variadas aplicações, tais como processamento de imagens, controle de tráfego aéreo, pesquisas acadêmicas, dentre outras. O termo GPGPUs (General Purpose Graphic Processing Unit) designa o uso de GPUs utilizadas na computação de aplicações de uso geral. A rápida proliferação das GPUs com ao advento de um modelo de programação amigável ao usuário fez programadores utilizarem essa tecnologia em aplicações onde confiabilidade é um requisito crítico, como aplicações espaciais, automotivas e médicas. O crescente uso de GPUs nestas aplicações faz com que novas arquiteturas deste dispositivo sejam propostas a fim de explorar seu alto poder computacional. A arquitetura FlexGrip (FLEXible GRaphIcs Processor) é um exemplo de GPGPU implementada em FPGA (Field Programmable Gate Array), sendo compatível com programas implementados especificamente para GPUs, com a vantagem de possibilitar a customização da arquitetura de acordo com a necessidade do usuário. O constante aumento da demanda por tecnologia fez com que GPUs de última geração sejam fabricadas em tecnologias com processo de fabricação de até 28nm, com frequência de relógio de até 1GHz. Esse aumento da frequência de relógio e densidade de transistores, combinados com a redução da tensão de operação, faz com que os transistores fiquem mais suscetíveis a falhas causadas por interferência de radiação. O modelo de programação utilizado pelas GPUs faz uso de constantes acessos a memórias e registradores, tornando estes dispositivos sensíveis a perturbações transientes em seus valores armazenados. Estas perturbações são denominadas Single Event Upset (SEU), ou bit-flip, e podem resultar em erros no resultado final da aplicação. Este trabalho tem por objetivo apresentar um modelo de injeção de falhas transientes do tipo SEU nos principais bancos de registradores da GPGPU Flexgrip, avaliando o comportamento da execução de diferentes algoritmos em presença de SEUs. O impacto de diferentes distribuições de recursos computacionais da GPU em sua confiabilidade também é abordado. Resultados podem indicar maneiras eficientes de obter-se confiabilidade explorando diferentes configurações de GPUs. === Graphic Process Units (GPUs) are specialized massively parallel units that are widely used due to their high computing processing capability with respective lower costs. The ability to rapidly manipulate high amounts of memory simultaneously makes them suitable for solving computer-intensive problems, such as analysis of air traffic control, academic researches, image processing and others. General-Purpose Graphic Processing Units (GPGPUs) designates the use of GPUs in applications commonly handled by Central Processing Units (CPUs). The rapid proliferation of GPUs due to the advent of significant programming support has brought programmers to use such devices in safety critical applications, like automotive, space and medical. This crescent use of GPUs pushed developers to explore its parallel architecture and proposing new implementations of such devices. The FLEXible GRaphics Processor (FlexGrip) is an example of GPGPU optimized for Field Programmable Arrays (FPGAs) implementation, fully compatible with GPU’s compiled programs. The increasing demand for computational has pushed GPUs to be built in cuttingedge technology down to 28nm fabrication process for the latest NVIDIA devices with operating clock frequencies up to 1GHz. The increases in operating frequencies and transistor density combined with the reduction of voltage supplies have made transistors more susceptible to faults caused by radiation. The program model adopted by GPUs makes constant accesses to its memories and registers, making this device sensible to transient perturbations in its stored values. These perturbations are called Single Event Upset (SEU), or just bit-flip, and might cause the system to experience an error. The main goal of this work is to study the behavior of the GPGPU FlexGrip under the presence of SEUs in a range of applications. The distribution of computational resources of the GPUs and its impact in the GPU confiability is also explored, as well as the characterization of the errors observed in the fault injection campaigns. Results can indicate efficient configurations of GPUs in order to avoid perturbations in the system under the presence of SEUs. |
author2 |
Kastensmidt, Fernanda Gusmão de Lima |
author_facet |
Kastensmidt, Fernanda Gusmão de Lima Nedel, Werner Mauricio |
author |
Nedel, Werner Mauricio |
author_sort |
Nedel, Werner Mauricio |
title |
Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento |
title_short |
Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento |
title_full |
Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento |
title_fullStr |
Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento |
title_full_unstemmed |
Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento |
title_sort |
analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento |
publishDate |
2016 |
url |
http://hdl.handle.net/10183/140441 |
work_keys_str_mv |
AT nedelwernermauricio analisedosefeitosdefalhastransientesnoconjuntodebancoderegistradoresemunidadesgraficasdeprocessamento AT nedelwernermauricio evaluationoftransientfaulteffectintheregisterfilesofgraphicsprocessingunits |
_version_ |
1718784204459737088 |
spelling |
ndltd-IBICT-oai-lume.ufrgs.br-10183-1404412018-10-22T04:40:28Z Analise dos efeitos de falhas transientes no conjunto de banco de registradores em unidades gráficas de processamento Evaluation of transient fault effect in the register files of graphics processing units Nedel, Werner Mauricio Kastensmidt, Fernanda Gusmão de Lima Azambuja, José Rodrigo Furlanetto de Microeletrônica Processamento : Imagem Simulação computacional GPU Parallel processing High performance Fault tolerance Unidades gráficas de processamento, mais conhecidas como GPUs (Graphics Processing Unit), são dispositivos que possuem um grande poder de processamento paralelo com respectivo baixo custo de operação. Sua capacidade de simultaneamente manipular grandes blocos de memória a credencia a ser utilizada nas mais variadas aplicações, tais como processamento de imagens, controle de tráfego aéreo, pesquisas acadêmicas, dentre outras. O termo GPGPUs (General Purpose Graphic Processing Unit) designa o uso de GPUs utilizadas na computação de aplicações de uso geral. A rápida proliferação das GPUs com ao advento de um modelo de programação amigável ao usuário fez programadores utilizarem essa tecnologia em aplicações onde confiabilidade é um requisito crítico, como aplicações espaciais, automotivas e médicas. O crescente uso de GPUs nestas aplicações faz com que novas arquiteturas deste dispositivo sejam propostas a fim de explorar seu alto poder computacional. A arquitetura FlexGrip (FLEXible GRaphIcs Processor) é um exemplo de GPGPU implementada em FPGA (Field Programmable Gate Array), sendo compatível com programas implementados especificamente para GPUs, com a vantagem de possibilitar a customização da arquitetura de acordo com a necessidade do usuário. O constante aumento da demanda por tecnologia fez com que GPUs de última geração sejam fabricadas em tecnologias com processo de fabricação de até 28nm, com frequência de relógio de até 1GHz. Esse aumento da frequência de relógio e densidade de transistores, combinados com a redução da tensão de operação, faz com que os transistores fiquem mais suscetíveis a falhas causadas por interferência de radiação. O modelo de programação utilizado pelas GPUs faz uso de constantes acessos a memórias e registradores, tornando estes dispositivos sensíveis a perturbações transientes em seus valores armazenados. Estas perturbações são denominadas Single Event Upset (SEU), ou bit-flip, e podem resultar em erros no resultado final da aplicação. Este trabalho tem por objetivo apresentar um modelo de injeção de falhas transientes do tipo SEU nos principais bancos de registradores da GPGPU Flexgrip, avaliando o comportamento da execução de diferentes algoritmos em presença de SEUs. O impacto de diferentes distribuições de recursos computacionais da GPU em sua confiabilidade também é abordado. Resultados podem indicar maneiras eficientes de obter-se confiabilidade explorando diferentes configurações de GPUs. Graphic Process Units (GPUs) are specialized massively parallel units that are widely used due to their high computing processing capability with respective lower costs. The ability to rapidly manipulate high amounts of memory simultaneously makes them suitable for solving computer-intensive problems, such as analysis of air traffic control, academic researches, image processing and others. General-Purpose Graphic Processing Units (GPGPUs) designates the use of GPUs in applications commonly handled by Central Processing Units (CPUs). The rapid proliferation of GPUs due to the advent of significant programming support has brought programmers to use such devices in safety critical applications, like automotive, space and medical. This crescent use of GPUs pushed developers to explore its parallel architecture and proposing new implementations of such devices. The FLEXible GRaphics Processor (FlexGrip) is an example of GPGPU optimized for Field Programmable Arrays (FPGAs) implementation, fully compatible with GPU’s compiled programs. The increasing demand for computational has pushed GPUs to be built in cuttingedge technology down to 28nm fabrication process for the latest NVIDIA devices with operating clock frequencies up to 1GHz. The increases in operating frequencies and transistor density combined with the reduction of voltage supplies have made transistors more susceptible to faults caused by radiation. The program model adopted by GPUs makes constant accesses to its memories and registers, making this device sensible to transient perturbations in its stored values. These perturbations are called Single Event Upset (SEU), or just bit-flip, and might cause the system to experience an error. The main goal of this work is to study the behavior of the GPGPU FlexGrip under the presence of SEUs in a range of applications. The distribution of computational resources of the GPUs and its impact in the GPU confiability is also explored, as well as the characterization of the errors observed in the fault injection campaigns. Results can indicate efficient configurations of GPUs in order to avoid perturbations in the system under the presence of SEUs. 2016-05-06T02:22:38Z 2015 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/140441 000991170 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS |