Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama

A Deposição Química de Vapor Assistida por Chama (DQVAC) foi empregada de forma pioneira na obtenção de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L. Esta técnica apresenta um grande potencial na deposição de óxidos, principalmente pelo baixo custo de equipamentos e insumo...

Full description

Bibliographic Details
Main Author: Trommer, Rafael Mello
Other Authors: Bergmann, Carlos Perez
Format: Others
Language:Portuguese
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/10183/11289
id ndltd-IBICT-oai-lume.ufrgs.br-10183-11289
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Biomateriais
Revestimento
Hidroxiapatita
spellingShingle Biomateriais
Revestimento
Hidroxiapatita
Trommer, Rafael Mello
Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama
description A Deposição Química de Vapor Assistida por Chama (DQVAC) foi empregada de forma pioneira na obtenção de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L. Esta técnica apresenta um grande potencial na deposição de óxidos, principalmente pelo baixo custo de equipamentos e insumos. Para aplicação como biomaterial, é desejável que os revestimentos apresentem cristalinidade, boa aderência, e porosidade, para favorecer a osteointegração. Neste trabalho, foram empregados como solução precursora acetato de cálcio e fosfato de amônio diluídos em álcool. Foram utilizadas as razões molares de Ca/P de 1,666, equivalente à da hidroxiapatita biológica, e 1,100, no intuito de investigar sua influência na microestrutura dos revestimentos obtidos. A temperatura da chama foi mantida constante, tendo-se variado a temperatura do substrato durante as deposições entre 500 e 550ºC, com fluxo da solução precursora de 4, 8 e 12 mL/min. Os tempos de deposição foram de 5, 10 e 20 minutos. Os revestimentos obtidos apresentaram-se porosos, com boa adesão, variando sua espessura entre 66 e 757 μm, principalmente em função do tempo de deposição. O fluxo da solução precursora e temperatura contribuem de modo discreto na determinação da espessura final. Também foi possível identificar partículas que supostamente fundiram na chama e alcançam o substrato com alta plasticidade. As análises por difração de raios X indicaram que a solução precursora de razão molar Ca/P de 1,666 leva a revestimentos cristalinos, com a fase majoritária hidroxiapatita, e pequenas quantidade de fosfato tricálcico (TCP-β). Com razão molar de 1,100, constatou-se a fase pirofosfato de cálcio-α (CPP). Parâmetros de deposição como tempo, temperatura e fluxo da solução precursora não afetaram a presença da fase hidroxiapatita nos revestimentos. Por espectroscopia de infravermelho foram identificados carbonatos nos revestimentos de hidroxiapatita. Análises por microssonda EDS confirmaram que os revestimentos produzidos são formados por cálcio e fósforo, onde a razão em peso de Ca/P varia entre 2,67 até 3,76. Os resultados do ensaio em solução de plasma simulado (SBF) não foram conclusivos quanto à biocompatibilidade dos revestimentos obtidos, sendo necessários ensaios in vitro e in vivo em culturas celulares e em animais para uma maior definição de sua biocompatibilidade. === Flame Assisted Chemical Vapor Deposition was employed for the first time in this work in order to obtain hydroxyapatite coatings on 316L stainless steel metallic substrates. This is a recent technique that shows enormous potential for oxides deposition, mainly due to the low cost of equipment and precursors. Aiming the application of the hydroxyapatite-stainless steel system as biomaterial, crystalline coatings with good adhesion to the substrate are desired, and porosity can favor the osseointegration In this work calcium acetate and ammonium phosphate diluted in alcohol were employed as precursor solution. Ca/P ratios of 1.666 (equivalent to biological hydroxyapatite) and 1.100 were tested, with the purpose of investigating its influence in the microstructure of produced films. Flame temperature was kept constant and substrate temperatures were varied in the range between 500 and 550ºC. Different solution precursor fluxes - 4, 8 and 12 mL/min - and deposition times - 5, 10 and 20 minutes - were also evaluated. The coatings obtained were porous, with good adhesion to substrate and thickness varying between 66 and 757μm, mainly in function of time. Precursor solution flux and temperature contribute in a discreet manner in the determination of final thickness. Also it’s possible to identify particles that probably melted in the flame and reached the substrate with high plasticity. X-ray diffraction results have indicated that a precursor solution with Ca/P ratio of 1.666 leads to crystalline coatings, with the presence of a major phase hydroxyapatite, and traces of tricalcium phosphate (β-TCP). With a ratio of 1.100, α−calcium pyrophosphate (CPP) phase was present in the coating. Parameters as deposition time, temperature and precursor solution flux don’t affect the presence of hydroxyapatite phase in the coatings. By infrared spectroscopy carbonates were identified in the hydroxyapatite coatings. Analysis with EDX confirmed that the produced coatings are formed by calcium and phosphorous, with a Ca/P weight ratio between 2.67 and 3.76. Results of essays by immersion in Simulated Body Fluid (SBF) solution did not permit conclusions about the biocompatibility of the hydroxyapatite coatings. It is necessary to carry out experiments in vitro and in vivo in cell culture and animals for a conclusive evaluation of their biocompatibility.
author2 Bergmann, Carlos Perez
author_facet Bergmann, Carlos Perez
Trommer, Rafael Mello
author Trommer, Rafael Mello
author_sort Trommer, Rafael Mello
title Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama
title_short Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama
title_full Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama
title_fullStr Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama
title_full_unstemmed Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama
title_sort obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316l utilizando a técnica de deposição química de vapor assistida por chama
publishDate 2007
url http://hdl.handle.net/10183/11289
work_keys_str_mv AT trommerrafaelmello obtencaoecaracterizacaoderevestimentosdehidroxiapatitasobresubstratosdeacoinoxidavel316lutilizandoatecnicadedeposicaoquimicadevaporassistidaporchama
_version_ 1718777451880906752
spelling ndltd-IBICT-oai-lume.ufrgs.br-10183-112892018-10-21T16:51:28Z Obtenção e caracterização de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L utilizando a técnica de deposição química de vapor assistida por chama Trommer, Rafael Mello Bergmann, Carlos Perez Santos, Luis Alberto dos Biomateriais Revestimento Hidroxiapatita A Deposição Química de Vapor Assistida por Chama (DQVAC) foi empregada de forma pioneira na obtenção de revestimentos de hidroxiapatita sobre substratos de aço inoxidável 316L. Esta técnica apresenta um grande potencial na deposição de óxidos, principalmente pelo baixo custo de equipamentos e insumos. Para aplicação como biomaterial, é desejável que os revestimentos apresentem cristalinidade, boa aderência, e porosidade, para favorecer a osteointegração. Neste trabalho, foram empregados como solução precursora acetato de cálcio e fosfato de amônio diluídos em álcool. Foram utilizadas as razões molares de Ca/P de 1,666, equivalente à da hidroxiapatita biológica, e 1,100, no intuito de investigar sua influência na microestrutura dos revestimentos obtidos. A temperatura da chama foi mantida constante, tendo-se variado a temperatura do substrato durante as deposições entre 500 e 550ºC, com fluxo da solução precursora de 4, 8 e 12 mL/min. Os tempos de deposição foram de 5, 10 e 20 minutos. Os revestimentos obtidos apresentaram-se porosos, com boa adesão, variando sua espessura entre 66 e 757 μm, principalmente em função do tempo de deposição. O fluxo da solução precursora e temperatura contribuem de modo discreto na determinação da espessura final. Também foi possível identificar partículas que supostamente fundiram na chama e alcançam o substrato com alta plasticidade. As análises por difração de raios X indicaram que a solução precursora de razão molar Ca/P de 1,666 leva a revestimentos cristalinos, com a fase majoritária hidroxiapatita, e pequenas quantidade de fosfato tricálcico (TCP-β). Com razão molar de 1,100, constatou-se a fase pirofosfato de cálcio-α (CPP). Parâmetros de deposição como tempo, temperatura e fluxo da solução precursora não afetaram a presença da fase hidroxiapatita nos revestimentos. Por espectroscopia de infravermelho foram identificados carbonatos nos revestimentos de hidroxiapatita. Análises por microssonda EDS confirmaram que os revestimentos produzidos são formados por cálcio e fósforo, onde a razão em peso de Ca/P varia entre 2,67 até 3,76. Os resultados do ensaio em solução de plasma simulado (SBF) não foram conclusivos quanto à biocompatibilidade dos revestimentos obtidos, sendo necessários ensaios in vitro e in vivo em culturas celulares e em animais para uma maior definição de sua biocompatibilidade. Flame Assisted Chemical Vapor Deposition was employed for the first time in this work in order to obtain hydroxyapatite coatings on 316L stainless steel metallic substrates. This is a recent technique that shows enormous potential for oxides deposition, mainly due to the low cost of equipment and precursors. Aiming the application of the hydroxyapatite-stainless steel system as biomaterial, crystalline coatings with good adhesion to the substrate are desired, and porosity can favor the osseointegration In this work calcium acetate and ammonium phosphate diluted in alcohol were employed as precursor solution. Ca/P ratios of 1.666 (equivalent to biological hydroxyapatite) and 1.100 were tested, with the purpose of investigating its influence in the microstructure of produced films. Flame temperature was kept constant and substrate temperatures were varied in the range between 500 and 550ºC. Different solution precursor fluxes - 4, 8 and 12 mL/min - and deposition times - 5, 10 and 20 minutes - were also evaluated. The coatings obtained were porous, with good adhesion to substrate and thickness varying between 66 and 757μm, mainly in function of time. Precursor solution flux and temperature contribute in a discreet manner in the determination of final thickness. Also it’s possible to identify particles that probably melted in the flame and reached the substrate with high plasticity. X-ray diffraction results have indicated that a precursor solution with Ca/P ratio of 1.666 leads to crystalline coatings, with the presence of a major phase hydroxyapatite, and traces of tricalcium phosphate (β-TCP). With a ratio of 1.100, α−calcium pyrophosphate (CPP) phase was present in the coating. Parameters as deposition time, temperature and precursor solution flux don’t affect the presence of hydroxyapatite phase in the coatings. By infrared spectroscopy carbonates were identified in the hydroxyapatite coatings. Analysis with EDX confirmed that the produced coatings are formed by calcium and phosphorous, with a Ca/P weight ratio between 2.67 and 3.76. Results of essays by immersion in Simulated Body Fluid (SBF) solution did not permit conclusions about the biocompatibility of the hydroxyapatite coatings. It is necessary to carry out experiments in vitro and in vivo in cell culture and animals for a conclusive evaluation of their biocompatibility. 2007-12-06T05:10:28Z 2006 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/10183/11289 000569087 por info:eu-repo/semantics/openAccess application/pdf reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul instacron:UFRGS