Método dos elementos de contorno para elasticidade linear 3D com avaliação direta das integrais singulares

Este trabalho apresenta a formulação e implementação numérica do método dos elementos de contorno (MEC) para elasticidade linear tri-dimensional, com avaliação direta das integrais fracamente e fortemente singulares. A implementação segue a formulação tradicional do MEC direto, e a discretização do...

Full description

Bibliographic Details
Main Author: Ubessi, Cristiano João Brizzi
Other Authors: Marczak, Rogerio Jose
Format: Others
Language:Portuguese
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10183/108490
Description
Summary:Este trabalho apresenta a formulação e implementação numérica do método dos elementos de contorno (MEC) para elasticidade linear tri-dimensional, com avaliação direta das integrais fracamente e fortemente singulares. A implementação segue a formulação tradicional do MEC direto, e a discretização do contorno das variáveis do problema é realizada com elementos descontínuos, permitindo o uso de malhas desconectadas ao longo das superfícies. O cálculo das integrais singulares é realizado através do uso de expansões assintóticas calculadas em torno de um ponto singular genérico. As expressões analíticas destas expansões são apresentadas no trabalho. Estas expansões serão subtraídas do núcleo original regularizando-o e a parte singular é integrada analiticamente, restando apenas uma integral regular, tornando ambas as integrais possíveis de serem calculadas com quadraturas de Gauss. É concluído que o presente método requer menos pontos de integração para o mesmo nível de erro quando comparado com outras técnicas. Alguns casos de elasticidade são resolvidos para ilustrar a eficiência e precisão do método. === This work presents the formulation and implementation of the boundary element method (BEM) to three dimensional linear elastostatics, with the direct evaluation of the strongly singular integral equations. The implementation follows the traditional direct BEM formulation, and the discretization of the boundary is carried out with discontinuous elements, enabling the use of disconnected meshes along the surfaces. The computation of the singular integral equations is accomplished by using the asymptotic expansions derived around a generic singular point. The analytical expressions for these expansions are presented in this work. The expansions are subtracted from the kernel to regularize it. This subtracted part is then added by computing a regular line integral along the boundary of the element. Both the integrals can be calculated with Gauss-type quadratures. It's observed that the present method needs less integration points for the same level of error when compared with other techniques. Several elasticity benchmarks are solved to demonstrate the eficiency and the accuracy of the present method.