Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.

Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-20T20:10:09Z No. of bitstreams: 1 GUTEMBERG GONÇALVES DOS SANTOS JÚNIOR - DISSERTAÇÃO PPGEE 2009..pdf: 2756190 bytes, checksum: 5812d37f7ad4c18eb26e9672d4890812 (MD5) === Made available in DSpace on 2018-08-20T20:10:09Z (GMT). No...

Full description

Bibliographic Details
Main Author: SANTOS JÚNIOR, Gutemberg Gonçalves dos.
Other Authors: PERKUSICH, Angelo.
Language:Portuguese
Published: Universidade Federal de Campina Grande 2009
Subjects:
Online Access:http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1508
id ndltd-IBICT-oai-localhost-riufcg-1508
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic Ciência da Computação.
Sistemas de reconhecimento de voz
Redução de ruído - sistema de voz
Subespaços vetoriais
Processamento de sinais de voz
Voz e tecnologia
Reconhecimento de voz
Ruídos de ambientes automotivos
Decomposição ULLV
Julius - Sistema de reconhecimento de voz
Voice Recognition Systems
Processing of voice signals
spellingShingle Ciência da Computação.
Sistemas de reconhecimento de voz
Redução de ruído - sistema de voz
Subespaços vetoriais
Processamento de sinais de voz
Voz e tecnologia
Reconhecimento de voz
Ruídos de ambientes automotivos
Decomposição ULLV
Julius - Sistema de reconhecimento de voz
Voice Recognition Systems
Processing of voice signals
SANTOS JÚNIOR, Gutemberg Gonçalves dos.
Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.
description Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-20T20:10:09Z No. of bitstreams: 1 GUTEMBERG GONÇALVES DOS SANTOS JÚNIOR - DISSERTAÇÃO PPGEE 2009..pdf: 2756190 bytes, checksum: 5812d37f7ad4c18eb26e9672d4890812 (MD5) === Made available in DSpace on 2018-08-20T20:10:09Z (GMT). No. of bitstreams: 1 GUTEMBERG GONÇALVES DOS SANTOS JÚNIOR - DISSERTAÇÃO PPGEE 2009..pdf: 2756190 bytes, checksum: 5812d37f7ad4c18eb26e9672d4890812 (MD5) Previous issue date: 2009-05-08 === O estabelecimento de uma interface de comunicação através da voz entre seres humanos e computadores vem sendo perseguido desde o início da era da computação. Nesta direção, diversos avanços foram realizados nas últimas seis décadas, permitindo o uso comercial de aplicações com reconhecimento de voz nos dias atuais. Entretanto, fatores como ruídos, reverberações, distorções entre outros, comprometem o desempenho desses sistemas ao reduzir a taxa de acerto quando submetidos a ambientes adversos. Assim, o estudo de técnicas que diminuam os efeitos desses problemas é de grande valia e vem ganhando destaque nas últimas décadas. O trabalho apresentado nesta dissertação tem como objetivo a redução dos problemas referentes aos ruídos característicos de ambientes automotivos, tornando os sistemas de reconhecimento de voz utilizados nesses ambientes mais robustos. Dessa forma, o controle de funcionalidades não-críticas de um automóvel, ou seja, funcionalidades que não coloquem em risco a vida do usuário como tocadores de música e ar condicionado, pode ser realizado através de comandos de voz. O sistema proposto é baseado numa etapa de pré-processamento do sinal de voz através do método de subespaços vetoriais. O desempenho deste método está diretamente relacionado com as dimensões (linhas× colunas) das matrizes representativas do sinal de entrada. Levando isso em consideração, a decomposição ULLV, apesar de se tratar de uma aproximação do método de subespaços vetoriais, foi utilizada por oferecer uma menor complexidade computacional quando comparada a métodos tradicionais baseados na decomposição SVD. O sistema de reconhecimento de voz Julius foi o escolhido para o estudo de caso por se tratar de um sistema desenvolvido em código livre que oferece um alto desempenho. Um banco de dados de voz com 44800 amostras foi gerado com o modelo de um ambiente automotivo. Por fim, a robustez do sistema foi avaliada e comparada com um método tradicional de redução de ruído chamado subtração espectral. === The establishment of a speech-based communication interface between humans and computers has been pursued since the beginning of the computer era. Several studies have been made over the last six decades in order to accomplish this interface, making possible commercial use of speech recognition applications. However, factors such as noise, reverberation, distortion among others degrades the performance of these systems. Thus, reducing their success rate when operating in adverse environments. With this in mind, the study of techniques to reduce the impact of these problems is of a great value and has gained prominence in recent decades. The work presented in this dissertation aims to reduce problems related to noise encountered in an automotive environment, improving the speech recognition system robustness. Thus,controlofnon-critical features of a car, such as CD player and air conditioning, can be performed through voice commands. The proposed system is based on a speech signal preprocessing step using the signal subspace method. Its performance is related to the size (lines× columns) of the matrices that represents the input signal. Therefore, the ULLV decomposition was used because it offers a lower computational complexity compared to traditional methods based on SVD decomposition. The speech recognizer Julius is an open source software that offers high performance and was the chosen one for the case study. A noisy speech database with 44800 samples was generated to model the automotive environment. Finally, the robustness of the system was evaluated and compared with a traditional method of noise reduction called spectral subtraction.
author2 PERKUSICH, Angelo.
author_facet PERKUSICH, Angelo.
SANTOS JÚNIOR, Gutemberg Gonçalves dos.
author SANTOS JÚNIOR, Gutemberg Gonçalves dos.
author_sort SANTOS JÚNIOR, Gutemberg Gonçalves dos.
title Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.
title_short Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.
title_full Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.
title_fullStr Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.
title_full_unstemmed Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.
title_sort redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais.
publisher Universidade Federal de Campina Grande
publishDate 2009
url http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1508
work_keys_str_mv AT santosjuniorgutemberggoncalvesdos reducaoderuidoparasistemasdereconhecimentodevozutilizandosubespacosvetoriais
AT santosjuniorgutemberggoncalvesdos noisereductionforspeechrecognitionsystemsusingvectorsubspaces
_version_ 1718726857901211648
spelling ndltd-IBICT-oai-localhost-riufcg-15082018-08-26T05:43:14Z Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais. Noise reduction for speech recognition systems using vector subspaces. SANTOS JÚNIOR, Gutemberg Gonçalves dos. PERKUSICH, Angelo. ROCHA NETO, José Sérgio da. FARIAS, José Ewerton Pombo de. MORAIS, Marcos Ricardo Alcântara. Ciência da Computação. Sistemas de reconhecimento de voz Redução de ruído - sistema de voz Subespaços vetoriais Processamento de sinais de voz Voz e tecnologia Reconhecimento de voz Ruídos de ambientes automotivos Decomposição ULLV Julius - Sistema de reconhecimento de voz Voice Recognition Systems Processing of voice signals Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-20T20:10:09Z No. of bitstreams: 1 GUTEMBERG GONÇALVES DOS SANTOS JÚNIOR - DISSERTAÇÃO PPGEE 2009..pdf: 2756190 bytes, checksum: 5812d37f7ad4c18eb26e9672d4890812 (MD5) Made available in DSpace on 2018-08-20T20:10:09Z (GMT). No. of bitstreams: 1 GUTEMBERG GONÇALVES DOS SANTOS JÚNIOR - DISSERTAÇÃO PPGEE 2009..pdf: 2756190 bytes, checksum: 5812d37f7ad4c18eb26e9672d4890812 (MD5) Previous issue date: 2009-05-08 O estabelecimento de uma interface de comunicação através da voz entre seres humanos e computadores vem sendo perseguido desde o início da era da computação. Nesta direção, diversos avanços foram realizados nas últimas seis décadas, permitindo o uso comercial de aplicações com reconhecimento de voz nos dias atuais. Entretanto, fatores como ruídos, reverberações, distorções entre outros, comprometem o desempenho desses sistemas ao reduzir a taxa de acerto quando submetidos a ambientes adversos. Assim, o estudo de técnicas que diminuam os efeitos desses problemas é de grande valia e vem ganhando destaque nas últimas décadas. O trabalho apresentado nesta dissertação tem como objetivo a redução dos problemas referentes aos ruídos característicos de ambientes automotivos, tornando os sistemas de reconhecimento de voz utilizados nesses ambientes mais robustos. Dessa forma, o controle de funcionalidades não-críticas de um automóvel, ou seja, funcionalidades que não coloquem em risco a vida do usuário como tocadores de música e ar condicionado, pode ser realizado através de comandos de voz. O sistema proposto é baseado numa etapa de pré-processamento do sinal de voz através do método de subespaços vetoriais. O desempenho deste método está diretamente relacionado com as dimensões (linhas× colunas) das matrizes representativas do sinal de entrada. Levando isso em consideração, a decomposição ULLV, apesar de se tratar de uma aproximação do método de subespaços vetoriais, foi utilizada por oferecer uma menor complexidade computacional quando comparada a métodos tradicionais baseados na decomposição SVD. O sistema de reconhecimento de voz Julius foi o escolhido para o estudo de caso por se tratar de um sistema desenvolvido em código livre que oferece um alto desempenho. Um banco de dados de voz com 44800 amostras foi gerado com o modelo de um ambiente automotivo. Por fim, a robustez do sistema foi avaliada e comparada com um método tradicional de redução de ruído chamado subtração espectral. The establishment of a speech-based communication interface between humans and computers has been pursued since the beginning of the computer era. Several studies have been made over the last six decades in order to accomplish this interface, making possible commercial use of speech recognition applications. However, factors such as noise, reverberation, distortion among others degrades the performance of these systems. Thus, reducing their success rate when operating in adverse environments. With this in mind, the study of techniques to reduce the impact of these problems is of a great value and has gained prominence in recent decades. The work presented in this dissertation aims to reduce problems related to noise encountered in an automotive environment, improving the speech recognition system robustness. Thus,controlofnon-critical features of a car, such as CD player and air conditioning, can be performed through voice commands. The proposed system is based on a speech signal preprocessing step using the signal subspace method. Its performance is related to the size (lines× columns) of the matrices that represents the input signal. Therefore, the ULLV decomposition was used because it offers a lower computational complexity compared to traditional methods based on SVD decomposition. The speech recognizer Julius is an open source software that offers high performance and was the chosen one for the case study. A noisy speech database with 44800 samples was generated to model the automotive environment. Finally, the robustness of the system was evaluated and compared with a traditional method of noise reduction called spectral subtraction. 2009-05-08 2018-08-20T20:10:09Z 2018-08-20 2018-08-20T20:10:09Z info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1508 SANTOS JÚNIOR, Gutemberg Gonçalves dos. Redução de ruído para sistemas de reconhecimento de voz utilizando subespaços vetoriais. 2009. 87f. (Dissertação de Mestrado em Engenharia Elétrica), Programa de Pós-graduação em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Paraíba - Brasil, 2009. por info:eu-repo/semantics/openAccess Universidade Federal de Campina Grande PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG Brasil Centro de Engenharia Elétrica e Informática - CEEI reponame:Biblioteca de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande instacron:UFCG