Summary: | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2016-10-10T13:01:19Z
No. of bitstreams: 1
2011 - Valdemir Lucio Durigon.pdf: 4431691 bytes, checksum: bc255769946a67387959db9cc02dbb28 (MD5) === Made available in DSpace on 2016-10-10T13:01:19Z (GMT). No. of bitstreams: 1
2011 - Valdemir Lucio Durigon.pdf: 4431691 bytes, checksum: bc255769946a67387959db9cc02dbb28 (MD5)
Previous issue date: 2016-02-25 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior-CAPES === Soil erosion is a growing problem in today's world, virtually in every continent, mainly due to
the rising demand for food, fibers and biofuels. On the other hand, the correct planning of
land use, avoiding farming lands with high erosion risk, could minimize the erosion process
without compromising food security. The aim of this study was to evaluate erosion risk and
soil losses in a watershed using remote sensing and GIS, coupled with temporal evolution of
vegetation cover and occupation of land, in areas of the municipalities of Paty do Alferes and
Miguel Pereira, Rio de Janeiro State. For this, the RUSLE (Revised Universal Soil Loss
Equation) was used as model to predict soil loss, combined with remote sensing data and the
derived NDVI (Normalized Difference Vegetation Index), to determine the soil coverage in a
GIS (Geographic Information System). Satellite images used in this research included: TM
sensor of Landsat-5, ETM+ of Landsat-7, CCD of CBERS-2, and CCD and HRC from
CBERS 2B, obtained for the study period. The processed remotely sensed data and the
geographic information system, integrated with models for predicting soil loss, showed good
performance for environmental analysis. The use of NDVI was a suitable tool for determining
the vegetation coverage, to be applied in soil loss prediction models. The soil losses and
erosion risks were strongly associated with characteristics of relief, and they can be used for
planning land usage and occupation, in urban and rural areas. More studies should be
conducted linking GIS, erosion prediction models, and remote sensing data in order to better
predict the occurrence of environmental disasters, also to create databases about soil?s
response in relation to different causative erosional agents. === A eros?o do solo ? um problema crescente no mundo atual, em praticamente todos os
continentes, que se deve ao crescimento da demanda por alimentos, ao mau uso dos solos e a
necessidade de produ??o de fibras e combust?veis. Por outro lado, o planejamento correto do
uso e cobertura dos solos evitando utilizar ?reas para a agricultura que tenham alto risco de
eros?o e alto potencial natural de eros?o pode minimizar o processo, sem comprometer a
seguran?a alimentar. O objetivo deste trabalho foi avaliar o risco de eros?o e a perda de solo
em uma bacia hidrogr?fica utilizando t?cnicas de sensoriamento remoto e SIG, associados ?
evolu??o temporal dos ?ndices de cobertura e ocupa??o do solo, em ?reas nos munic?pios de
Paty do Alferes e Miguel Pereira, Estado do Rio de Janeiro. Para isso, utilizou-se o modelo de
predi??o de perdas de solos, no caso a RUSLE (?Revised Universal Soil Loss Equation?),
associado a t?cnica de sensoriamento remoto integrada ao ?ndice de vegeta??o NDVI
(?Normalized Difference Vegetation Index?) para determinar a cobertura dos solos em um
SIG (Sistema de Informa??o Geogr?fica). Para tal, foram utilizadas imagens de sat?lite dos
sensores TM Landsat-5, ETM+ Landsat-7 CCD CBERS-2 e CCD e HRC do CBERS 2B
coletadas no per?odo considerado. Os dados de sensoriamento remoto e do sistema de
informa??es geogr?ficas integrados a modelos de predi??o de perdas de solos caracterizaramse
como importantes instrumentos na an?lise do meio ambiente. A utiliza??o de NDVI
constitui-se em ferramenta adequada para a determina??o da cobertura, para aplica??o em
modelos de predi??o de perda de solo. As perdas de solo, o potencial natural de eros?o e o
risco mostraram forte rela??o com as caracter?sticas do relevo, podendo ser utilizados no
planejamento do uso e ocupa??o do solo em ?reas urbana e rural. Mais estudos devem ser
realizados associando SIG, modelos de predi??o de eros?o e t?cnicas de sensoriamento
remoto no sentido de melhor prever a ocorr?ncia de desastres ambientais, tamb?m para criar
bancos de informa??es sobre o comportamento dos solos em rela??o aos diversos agentes
causadores do processo erosivo.
|