Summary: | Submitted by Simone Souza (simonecgsouza@hotmail.com) on 2017-09-15T15:03:15Z
No. of bitstreams: 1
DISS_2014_Larissa Finger.pdf: 952368 bytes, checksum: ce15137e3eda929260a105c871adbf0a (MD5) === Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2017-09-19T13:39:00Z (GMT) No. of bitstreams: 1
DISS_2014_Larissa Finger.pdf: 952368 bytes, checksum: ce15137e3eda929260a105c871adbf0a (MD5) === Made available in DSpace on 2017-09-19T13:39:00Z (GMT). No. of bitstreams: 1
DISS_2014_Larissa Finger.pdf: 952368 bytes, checksum: ce15137e3eda929260a105c871adbf0a (MD5)
Previous issue date: 2014-08-29 === CAPES === A redução na ingestão de proteínas e aumento na ingestão de carboidratos perfaz um padrão alimentar muito presente no estilo de vida atual da população mundial e está associado à incidência de patologias tais como diabetes mellitus, obesidade, hipertensão, entre outras. A ingestão de quantidades insuficientes de proteínas também está associada ao desenvolvimento de estresse oxidativo, o que contribui para o estabelecimento de lesões teciduais que podem culminar em prejuízo funcional de diversos órgãos. Diante destes fatos, o nosso objetivo foi investigar os possíveis danos renais decorrentes da administração da dieta hipoproteica-hiperglicídica a ratos no início da fase de crescimento. Ratos Wistar machos (~30 dias e 100g) foram divididos nos grupos: 1) Controle, alimentado com uma dieta com 17% de proteína e 63% de carboidrato por 15 (C15) ou 45 dias (C45); 2) LPHC, ratos alimentados com uma dieta contendo 6% de proteína e 74% de carboidrato por 15 (LPHC15) ou 45 dias (LPHC45) e 3) reversão, alimentados por 15 dias com a dieta LPHC e por mais 30 dias com a dieta controle (R45). A tolerância à glicose (GTT) foi avaliada pelas áreas sob as curvas (AUC) glicêmicas obtidas pelo método trapezoidal e a tolerância à insulina (ITT) pela constante de decaimento da glicose sérica (Kitt). O estresse oxidativo foi avaliado pela da quantificação do nível de lipoperoxidação através da dosagem do MDA (malondialdeído) nos rins, níveis de GSH (glutationa reduzida) e determinação da atividade das enzimas GPx (glutationa peroxidase), GR (glutationa redutase), catalase e SOD (superóxido dismutase) nos rins, além da quantificação da capacidade antioxidante total (CAT) no plasma. Analisou-se também. A função renal foi avaliada pela da quantificação da creatinina plasmática e análise histológica. Os resultados foram expressos como a média ± E.P.M. e as comparações estatísticas realizadas através do Teste t de Student ou ANOVA uma via, seguida de pós-teste de Tukey (p < 0,05). Os animais LPHC15, apresentaram valores similares ao grupo C15 para GSH, GPx, GR, SOD e catalase. No entanto, o peso dos rins (C15: 5,59 ± 0,21; LPHC15: 4,60
± 0,08 mg / g de peso corporal) e a CAT (C15: 0,486 ± 0,059; LPHC5: 0,252 ± 0,059 mmol/L) foram menores e a creatinina plasmática (C45: 0,672 ± 0,028; LPHC45: 1,003 ± 0,039 mg/dL) e o nível de MDA (C15: 0,0195 ± 0,001; LPHC15: 0,033 ± 0,001 mmol/g de tecido) foram maiores no grupo LPHC15 em relação ao C15. Após a administração da dieta LPHC por 45 dias, os valores da glicemia de jejum dos animais C45 e LPHC45 foram similares. No entanto, a glicemia dos animais do grupo R45 foi 11% (p0,05) maior que nos demais grupos. No GTT não houve diferença na AUC entre os grupos analisados. O mesmo ocorreu na análise do decaimento da glicose plasmática após administração de insulina entre os diferentes grupos. A atividade das enzimas SOD e catalase também foi similar nos três grupos avaliados, já a atividade das enzimas GPx (C45: 2,730 ± 0,732; LPHC45: 0,928 ± 0,176; R45: 3,290 ± 0,304 U/mg de proteína) e GR (C45: 4,701 ± 0,320; LPHC45: 2,840 ± 0,151; R45: 6,308 ± 1,087 U/mg de proteína) foram menores no grupo LPHC45. A concentração de GSH foi menor no grupo R45 (C45: 0,785 ± 0,034; LPHC45: 0,760 ± 0,047; R45: 0,510 ± 0,024 mmol/g de tecido). O nível de MDA foi maior nos grupos LPHC45 e R45 (C45: 11,170 ± 2,020; LPHC45: 31,030 ± 3,060; R45: 31,540 ± 4,460 mmol/g de tecido). O peso dos rins (C45: 3,72 ± 0,03; LPHC45: 3,17 ± 0,05; R45: 3,66 ± 0,09) e a CAT (C45: 0,583 ± 0,059; LPHC45: 0,135 ± 0,050; R45= 0,407 ± 0,108 mmol/L) foram menores no grupo LPHC45. O nível plasmático de creatinina foi maior nos grupos LPHC45 e R45 (C45: 0,556 ± 0,020; LPHC45: 0,640 ± 0,021; R45: 0,678 ± 0,023 mg/dL). Análise histológica mostrou deposição de lipídeos no interstício dos rins nos grupos LPHC45 e R45, classificada como leve a acentuada. Estes dados permitem concluir que a dieta LPHC introduzida logo após o desmame e administrada por 45 dias não altera a tolerância à glicose nem a sensibilidade à insulina, diferente do que já foi demonstrado em estudo prévio, quando a mesma é administrada por 15 dias, resultando em maior sensibilidade à insulina. No entanto, restrição protéica introduzida logo após o desmame levou a um prejuízo no desenvolvimento dos rins, com possível prejuízo na função renal, associada a acúmulo de lipídeos e ao stresse oxidativo. Embora a reversão da dieta recupere o peso dos rins, os níveis elevados de creatinina sérica e o maior conteúdo de MDA no órgão sugerem que os danos funcionais decorrentes do stress oxidativo são irreversíveis. === The reduction in protein intake and the increase in carbohydrate intake feature a dietary pattern present in the current lifestyle of the population worldwide, and it is associated with the incidence of pathologies such as diabetes mellitus, obesity and high blood pressure among others. Low protein intake is also associated with the development of oxidative stress, which contributes to the establishment of tissue lesions that may result in functional impairment of various organs. In view of these facts, this study aimed to investigate the possible renal damages caused by the administration of a hypoproteic-hyperglycemic diet to rats in the early growth stages. Male Wistar rats (~30 days and 100g) were divided into the following groups: 1) Control, fed on a diet containing 17% protein and 63% carbohydrates for 15 (C15) or 45 (C45) days; 2) LPHC, fed on a diet containing 6% protein and 74% carbohydrates for 15 (LPHC15) or 45 (LPHC45) days, and 3) reversal group, fed on a LPHC diet during 15 days and then fed on a control diet for the following 30 days (R45). Glucose tolerance (GTT) was assessed by the areas under glycemic curves (AUC) obtained by the Trapezoidal Rule and insulin tolerance (ITT) was calculated according to the serum glucose decline rate constant (Kitt). Oxidative stress was evaluated by quantifying the lipid peroxidation level through the dosage of MDA (malondialdehyde) in kidneys, levels of GSH (reduced glutathione) and by determining the activity of the enzymes GPx (glutathione peroxidase), GR (glutathione reductase), catalase and SOD (superoxide dismutase) in the kidneys as well as quantifying the total antioxidant capacity (TAC) in plasma. The renal function was evaluated by the quantification of plasma creatinine and histological analysis. Results were expressed as the mean ± SEM, and statistical comparisons were carried out by means of the Student t Test or one-way ANOVA, followed by Tukey’s post-test (p < 0,05). LPHC15 animals presented similar values to those of the C15 group in reference to GSH, GPx, GR, SOD and catalase. However, the weight of kidneys (C15: 5,59 ± 0,21; LPHC15: 4,60 ± 0,08 mg / g body weight) and
TAC values (C15: 0,486 ± 0,059; LPHC5: 0,252 ± 0,059 mmol/L) were lower, while plasma creatinine (C45: 0,672 ± 0,028; LPHC45: 1,003 ± 0,039 mg/dL) and MDA level (C15: 0,0195 ± 0,001; LPHC15: 0,033 ± 0,001 mmol/g tissue) were higher for the LPHC15 group compared with C15. After administering the LPHC diet for 45 days, the values for fasting glycemia in C45 and LPHC45 animals were similar. However, the glycemia level of R45 animals was 11% (p < 0,05) higher than in the other groups. There were no differences in the AUC between groups analyzed for GTT. The same happened when plasma glucose decline was analyzed following insulin administration. The activity of SOD and catalase enzymes was similar in the three groups under evaluation, whereas the activity of GPx (C45: 2,730 ± 0,732; LPHC45: 0,928 ± 0,176; R45: 3,290 ± 0,304 U/mg protein) and GR (C45: 2,730 ± 0,732; LPHC45: 0,928 ± 0,176; R45: 3,290 ± 0,304 U/mg protein) was lower in the LPHC45 group. GSH concentration was lower in the R45 group (C45: 0,785 ± 0,034; LPHC45: 0,760 ± 0,047; R45: 0,510 ± 0,024 mmol/g of tissue). The level of MDA was higher in the LPHC45 and R45 groups (C45: 11,170 ± 2,020; LPHC45: 31,030 ± 3,060; R45: 31,540 ± 4,460 mmol/g of tissue). The weight of kidneys (C45: 3,72 ± 0,03; LPHC45: 3,17 ± 0,05; R45: 3,66 ± 0,09) and TAC (C45: 0,583 ± 0,059; LPHC45: 0,135 ± 0,050; R45= 0,407 ± 0,108 mmol/L) showed lower values in the LPHC45 group. LPHC45 and R45 groups presented higher levels of plasma creatinine (C45: 0,556 ± 0,020; LPHC45: 0,640 ± 0,021; R45: 0,678 ± 0,023 mg/dL). Histological analysis showed interstitial lipid deposition in kidneys for LPHC45 and R45 groups, graded from mild to marked. These data lead to the conclusion that the LPHC diet, when introduced immediately after weaning and administered along 45 days, does not alter either glucose tolerance or insulin sensitivity. This conclusion is different from what was concluded in a previous study where LPHC diet administered during 15 days resulted in greater insulin sensitivity. Yet protein restriction, introduced soon after weaning, has led to damage in kidney development, which may result in impaired renal function associated to increased fat deposition and oxidative stress. Even though the diet reversal may recover kidney weight, the increased levels of serum creatinine and higher content of MDA in the organ suggest that functional damages resulting from oxidative stress are irreversible.
|