Video motion description based on histograms of sparse trajectories

Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-06T19:12:19Z No. of bitstreams: 1 fabioluizmarinhodeoliveira.pdf: 1410854 bytes, checksum: cb71ee666cda7d462ce0dd33963a988c (MD5) === Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-07T13:33:...

Full description

Bibliographic Details
Main Author: Oliveira, Fábio Luiz Marinho de
Other Authors: Vieira, Marcelo Bernardes
Language:Portuguese
Published: Universidade Federal de Juiz de Fora (UFJF) 2017
Subjects:
Online Access:https://repositorio.ufjf.br/jspui/handle/ufjf/4838
id ndltd-IBICT-oai-hermes.cpd.ufjf.br-ufjf-4838
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Trajetórias esparsas
Descrição de movimento
Reconhecimento de ações humanas em vídeos
Aprendizado de métrica
Histograma
Descritor tensorial
Sparse trajectories
Motion description
Video human action recognition
Metric learning
Histogram
Tensor descriptor
spellingShingle CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Trajetórias esparsas
Descrição de movimento
Reconhecimento de ações humanas em vídeos
Aprendizado de métrica
Histograma
Descritor tensorial
Sparse trajectories
Motion description
Video human action recognition
Metric learning
Histogram
Tensor descriptor
Oliveira, Fábio Luiz Marinho de
Video motion description based on histograms of sparse trajectories
description Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-06T19:12:19Z No. of bitstreams: 1 fabioluizmarinhodeoliveira.pdf: 1410854 bytes, checksum: cb71ee666cda7d462ce0dd33963a988c (MD5) === Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-07T13:33:08Z (GMT) No. of bitstreams: 1 fabioluizmarinhodeoliveira.pdf: 1410854 bytes, checksum: cb71ee666cda7d462ce0dd33963a988c (MD5) === Made available in DSpace on 2017-06-07T13:33:08Z (GMT). No. of bitstreams: 1 fabioluizmarinhodeoliveira.pdf: 1410854 bytes, checksum: cb71ee666cda7d462ce0dd33963a988c (MD5) Previous issue date: 2016-09-05 === Descrição de movimento tem sido um tema desafiador e popular há muitos anos em visão computacional e processamento de sinais, mas também intimamente relacionado a aprendizado de máquina e reconhecimento de padrões. Frequentemente, para realizar essa tarefa, informação de movimento é extraída e codificada em um descritor. Este trabalho apresenta um método simples e de rápida computação para extrair essa informação e codificá-la em descritores baseados em histogramas de deslocamentos relativos. Nossos descritores são compactos, globais, que agregam informação de quadros inteiros, e o que chamamos de auto-descritor, que não depende de informações de sequências senão aquela que pretendemos descrever. Para validar estes descritores e compará-los com outros tra balhos, os utilizamos no contexto de Reconhecimento de Ações Humanas, no qual cenas são classificadas de acordo com as ações nelas exibidas. Nessa validação, obtemos resul tados comparáveis aos do estado-da-arte para a base de dados KTH. Também avaliamos nosso método utilizando as bases UCF11 e Hollywood2, com menores taxas de reconhe cimento, considerando suas maiores complexidades. Nossa abordagem é promissora, pelas razoáveis taxas de reconhecimento obtidas com um método muito menos complexo que os do estado-da-arte, em termos de velocidade de computação e compacidade dos descritores obtidos. Adicionalmente, experimentamos com o uso de Aprendizado de Métrica para a classificação de nossos descritores, com o intuito de melhorar a separabilidade e a com pacidade dos descritores. Os resultados com Aprendizado de Métrica apresentam taxas de reconhecimento inferiores, mas grande melhoria na compacidade dos descritores. === Motion description has been a challenging and popular theme over many years within computer vision and signal processing, but also very closely related to machine learn ing and pattern recognition. Very frequently, to address this task, one extracts motion information from image sequences and encodes this information into a descriptor. This work presents a simple and fast computing method to extract this information and en code it into descriptors based on histograms of relative displacements. Our descriptors are compact, global, meaning it aggregates information from whole frames, and what we call self-descriptors, meaning they do not depend on information from sequences other than the one we want to describe. To validate these descriptors and compare them to other works, we use them in the context of Human Action Recognition, where scenes are classified according to the action portrayed. In this validation, we achieve results that are comparable to those in the state-of-the-art for the KTH dataset. We also evaluate our method on the UCF11 and Hollywood2 datasets, with lower recognition rates, considering their higher complexity. Our approach is a promising one, due to the fairly good recogni tion rates we obtain with a much less complex method than those of the state-of-the-art, in terms of speed of computation and final descriptor compactness. Additionally, we ex periment with the use of Metric Learning in the classification of our descriptors, aiming to improve the separability and compactness of the descriptors. Our results for Metric Learning show inferior recognition rates, but great improvement for the compactness of the descriptors.
author2 Vieira, Marcelo Bernardes
author_facet Vieira, Marcelo Bernardes
Oliveira, Fábio Luiz Marinho de
author Oliveira, Fábio Luiz Marinho de
author_sort Oliveira, Fábio Luiz Marinho de
title Video motion description based on histograms of sparse trajectories
title_short Video motion description based on histograms of sparse trajectories
title_full Video motion description based on histograms of sparse trajectories
title_fullStr Video motion description based on histograms of sparse trajectories
title_full_unstemmed Video motion description based on histograms of sparse trajectories
title_sort video motion description based on histograms of sparse trajectories
publisher Universidade Federal de Juiz de Fora (UFJF)
publishDate 2017
url https://repositorio.ufjf.br/jspui/handle/ufjf/4838
work_keys_str_mv AT oliveirafabioluizmarinhode videomotiondescriptionbasedonhistogramsofsparsetrajectories
_version_ 1718886810275282944
spelling ndltd-IBICT-oai-hermes.cpd.ufjf.br-ufjf-48382019-01-21T21:41:22Z Video motion description based on histograms of sparse trajectories Oliveira, Fábio Luiz Marinho de Vieira, Marcelo Bernardes Fonseca Neto, Raul Pedrini, Hélio CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Trajetórias esparsas Descrição de movimento Reconhecimento de ações humanas em vídeos Aprendizado de métrica Histograma Descritor tensorial Sparse trajectories Motion description Video human action recognition Metric learning Histogram Tensor descriptor Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-06T19:12:19Z No. of bitstreams: 1 fabioluizmarinhodeoliveira.pdf: 1410854 bytes, checksum: cb71ee666cda7d462ce0dd33963a988c (MD5) Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-07T13:33:08Z (GMT) No. of bitstreams: 1 fabioluizmarinhodeoliveira.pdf: 1410854 bytes, checksum: cb71ee666cda7d462ce0dd33963a988c (MD5) Made available in DSpace on 2017-06-07T13:33:08Z (GMT). No. of bitstreams: 1 fabioluizmarinhodeoliveira.pdf: 1410854 bytes, checksum: cb71ee666cda7d462ce0dd33963a988c (MD5) Previous issue date: 2016-09-05 Descrição de movimento tem sido um tema desafiador e popular há muitos anos em visão computacional e processamento de sinais, mas também intimamente relacionado a aprendizado de máquina e reconhecimento de padrões. Frequentemente, para realizar essa tarefa, informação de movimento é extraída e codificada em um descritor. Este trabalho apresenta um método simples e de rápida computação para extrair essa informação e codificá-la em descritores baseados em histogramas de deslocamentos relativos. Nossos descritores são compactos, globais, que agregam informação de quadros inteiros, e o que chamamos de auto-descritor, que não depende de informações de sequências senão aquela que pretendemos descrever. Para validar estes descritores e compará-los com outros tra balhos, os utilizamos no contexto de Reconhecimento de Ações Humanas, no qual cenas são classificadas de acordo com as ações nelas exibidas. Nessa validação, obtemos resul tados comparáveis aos do estado-da-arte para a base de dados KTH. Também avaliamos nosso método utilizando as bases UCF11 e Hollywood2, com menores taxas de reconhe cimento, considerando suas maiores complexidades. Nossa abordagem é promissora, pelas razoáveis taxas de reconhecimento obtidas com um método muito menos complexo que os do estado-da-arte, em termos de velocidade de computação e compacidade dos descritores obtidos. Adicionalmente, experimentamos com o uso de Aprendizado de Métrica para a classificação de nossos descritores, com o intuito de melhorar a separabilidade e a com pacidade dos descritores. Os resultados com Aprendizado de Métrica apresentam taxas de reconhecimento inferiores, mas grande melhoria na compacidade dos descritores. Motion description has been a challenging and popular theme over many years within computer vision and signal processing, but also very closely related to machine learn ing and pattern recognition. Very frequently, to address this task, one extracts motion information from image sequences and encodes this information into a descriptor. This work presents a simple and fast computing method to extract this information and en code it into descriptors based on histograms of relative displacements. Our descriptors are compact, global, meaning it aggregates information from whole frames, and what we call self-descriptors, meaning they do not depend on information from sequences other than the one we want to describe. To validate these descriptors and compare them to other works, we use them in the context of Human Action Recognition, where scenes are classified according to the action portrayed. In this validation, we achieve results that are comparable to those in the state-of-the-art for the KTH dataset. We also evaluate our method on the UCF11 and Hollywood2 datasets, with lower recognition rates, considering their higher complexity. Our approach is a promising one, due to the fairly good recogni tion rates we obtain with a much less complex method than those of the state-of-the-art, in terms of speed of computation and final descriptor compactness. Additionally, we ex periment with the use of Metric Learning in the classification of our descriptors, aiming to improve the separability and compactness of the descriptors. Our results for Metric Learning show inferior recognition rates, but great improvement for the compactness of the descriptors. 2017-06-07T13:33:08Z 2017-06-06 2017-06-07T13:33:08Z 2016-09-05 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis https://repositorio.ufjf.br/jspui/handle/ufjf/4838 por info:eu-repo/semantics/openAccess Universidade Federal de Juiz de Fora (UFJF) Programa de Pós-graduação em Ciência da Computação UFJF Brasil ICE – Instituto de Ciências Exatas reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora instacron:UFJF