Gerenciamento de reservatório de petróleo baseado em controle preditivo não linear por meio de filtro de partículas.

Made available in DSpace on 2018-08-01T22:57:12Z (GMT). No. of bitstreams: 1 tese_10087_Dissertação Final de Mestrado - Társis Baia Fortunato PDF.20180423-141053.pdf: 2621561 bytes, checksum: 7c512f8e1eafe2e7278d5463307a03e0 (MD5) Previous issue date: 2018-02-20 === A energia é um dos bens mais n...

Full description

Bibliographic Details
Main Author: FORTUNATO, T. B.
Other Authors: MAURI, G. R.
Format: Others
Published: Universidade Federal do Espírito Santo 2018
Subjects:
Est
Online Access:http://repositorio.ufes.br/handle/10/7818
Description
Summary:Made available in DSpace on 2018-08-01T22:57:12Z (GMT). No. of bitstreams: 1 tese_10087_Dissertação Final de Mestrado - Társis Baia Fortunato PDF.20180423-141053.pdf: 2621561 bytes, checksum: 7c512f8e1eafe2e7278d5463307a03e0 (MD5) Previous issue date: 2018-02-20 === A energia é um dos bens mais necessários da humanidade, e essa necessidade continua altamente depende da produção de petróleo e gás. Deste modo, os Sistemas de Produção de Petróleo (SPP) necessitam de avanços continuamente. Atualmente, duas técnicas que compõem as principais tendências da indústria de petróleo e contribuem para o avanço do SPP são o controle preditivo baseado em modelo do inglês Model Predictive Control (MPC) e as técnicas de estimação de estados. Os SPP possuem características de não linearidades que são vistas, em consequência, também nos modelos matemáticos que reproduzem seus comportamentos. Entretanto, o MPC é uma técnica madura somente para modelos lineares, e sua aplicação em processos não lineares é condicionada a hipóteses simplificadoras. A sua variante Non-Linear Model Predictive Control (NMPC), que utiliza modelos não lineares, tem sido indicada para utilização no controle de SPP, pois, não assume hipóteses simplificadoras. Os desafios do NMPC se encontram na resolução do problema de otimização baseada em modelo que integra sua metodologia e também no tratamento de incertezas. Sendo assim, tem sido comum associar NMPC com estimação de estados. Contudo, mesmo havendo várias técnicas de estimação disponíveis são poucas que lidam bem com o caráter não linear do modelo. Deste modo, esta dissertação propõe uma metodologia de controle de um sistema de produção de petróleo considerando a etapa de recuperação secundária waterflooding com um NMPC associado à estimação de estados. Ao desafio na etapa de otimização, é aplicada uma metodologia que reformula o problema de otimização como um problema de filtragem e o ótimo é estimado com o Filtro Partículas (PF), que nesta tarefa é renomeado para Particle Filter Optimization (PFO). Ao processo estimação de estados, é aplicado também um Filtro de Partículas que não faz nenhuma hipótese simplificadora em relação às incertezas não-Gaussianas. As simulações necessárias durante a aplicação das duas técnicas foram obtidas com o modelo que descreve o escoamento imiscível bifásico óleo-água e com o método Volumes Finitos na sua variante Two Point Flux Approximation. Os resultados mostraram que o PFO manteve a produção no set point e que a estimação de estados com PF foi satisfatória, pois, os resultados de monitoramento não apresentaram degeneração nem empobrecimento na reamostragem do PF. Os resultados a respeito do tratamento da incerteza demostraram que o PF foi capaz de reduzir a incerteza na saturação estimada.