Petrov - galerkin finite element formulations for incompressible viscous flows

Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2017-10-04T17:13:38Z No. of bitstreams: 1 PAULO AUGUSTO BERQUÓ DE SAMPAIO D.pdf: 6576641 bytes, checksum: 71355f6eedcf668b2236d4c10f1a2551 (MD5) === Made available in DSpace on 2017-10-04T17:13:38Z (GMT). No. of bitstreams: 1 PAULO A...

Full description

Bibliographic Details
Main Authors: Sampaio, Paulo Augusto Berquó de, Instituto de Engenharia Nuclear
Other Authors: Weatherill, Nigel
Language:English
Published: Instituto de Engenharia Nuclear 2017
Subjects:
Online Access:http://carpedien.ien.gov.br:8080/handle/ien/1954
Description
Summary:Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2017-10-04T17:13:38Z No. of bitstreams: 1 PAULO AUGUSTO BERQUÓ DE SAMPAIO D.pdf: 6576641 bytes, checksum: 71355f6eedcf668b2236d4c10f1a2551 (MD5) === Made available in DSpace on 2017-10-04T17:13:38Z (GMT). No. of bitstreams: 1 PAULO AUGUSTO BERQUÓ DE SAMPAIO D.pdf: 6576641 bytes, checksum: 71355f6eedcf668b2236d4c10f1a2551 (MD5) Previous issue date: 1991-09 === The basic difficulties associated with the numerical solution of the incompressible Navier-Stokes equations in primitive variables are identified and analysed. These difficulties, namely the lack of self-adjointness of the flow equations and the requirement of choosing compatible interpolations for velocity and pressure, are addressed with the development of consistent Petrov-Galerkin formulations. In particular, the solution of incompressible viscous flow problems using simple equal order interpolation for all variables becomes possible .