Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco
=== The estimation of the exceedance probability of a rare flood is a current problem in engineering. However, rare floods are associated to high return periods which are much longer than the time span covered by systematic streamflow records. The conventional flood frequency analysis, which is bas...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal de Minas Gerais
2005
|
Online Access: | http://hdl.handle.net/1843/REPA-6MUQ2N |
id |
ndltd-IBICT-oai-bibliotecadigital.ufmg.br-MTD2BR-REPA-6MUQ2N |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
description |
=== The estimation of the exceedance probability of a rare flood is a current problem in engineering. However, rare floods are associated to high return periods which are much longer than the time span covered by systematic streamflow records. The conventional flood frequency analysis, which is based on the usually short systematic streamflow data samples, may yield unrealistic estimates of the risks associated with extreme events. In order to reduce the uncertainties and to produce more reliable parameter and quantile estimates, every piece of available information should be used. Beyond systematic streamflow data, information on historical floods and paleofloods may be found and incorporated into the flood frequency analysis. Such pieces of information may augment the sample size, thus reducing the range of extrapolation and yielding more reliable inferences in the domain of extreme floods. Bayesian theory is also an important statistical tool for flood frequency analysis. According to the Bayesian approach, the distribution parameters are treated as random variables, being modeled by a prior probability distribution, which may be formulated on the basis, for instance, of a subjective prior knowledge, as provided by a specialized professional, or additional information from regional analysis. By using Bayes theorem, this prior distribution, which may be informative or not, is then updated by the local streamflow data, thus producing the posterior distribution of the parameters. Hence, by using this posterior distribution along with the flood probability distribution, conditioned to the parameters, it is possible to find a marginal probability function to floods, independently of parameter estimates. The present MSc thesis aims to evaluate the gain, in terms of uncertainty reduction, from using the
Bayesian approach, along with information on historical floods, into the frequency analysis of annual flood maxima. In order to perform it, a case study for the São Francisco river basin, at the location of São Francisco, is presented according to the following scenarios: (1) only the systematic flood records are used; (2) information on historical floods are incorporated; and (3) Bayesian theory is employed, with and without an informative prior distribution on parameters and on the probabilistic model. === A determinação da probabilidade de que uma certa vazão seja igualada ou excedida em um ao qualquer, objeto da análise de freqüência de cheias, constitui um problema corrente na engenharia. No entanto, essa vazão de interesse está freqüentemente associada a um período de retorno substancialmente mais longo que o dos registros fluviométricos regulares. A análise de freqüência tradicional de vazões de enchentes, baseada exclusivamente nas amostras usualmente curtas de dados sistemáticos, pode conduzir a estimativas pouco realistas da probabilidade de excedência de eventos extremos. Para reduzir as incertezas envolvidas e aumentar o nível de confiança nas estimativas dos parâmetros e quantis, deve-se utilizar toda a informação disponível. Além dos dados sistemáticos, informações sobre cheias históricas e paleohidrológicas (paleovazões) podem ser encontradas e incorporadas à análise de freqüência. Essas informações permitem aumentar substancialmente o tamanho da amostra, reduzindo o grau de extrapolação e tornando menos incertas as inferências feitas no domínio
das cheias extremas. A teoria bayesiana também constitui uma ferramenta estatística importante para a análise de freqüência de cheias. Na abordagem bayesiana, os parâmetros do modelo probabilístico são tratados como variáveis aleatórias, modeladas por uma distribuição de probabilidades a priori, formulada, por exemplo, à luz de algum conhecimento subjetivo acumulado por especialistas ou de informações provenientes de análise regional. Utilizando o teorema de Bayes, essa distribuição a priori, que pode ser informativa ou não, é então atualizada pelos dados fluviométricos locais, resultando na distribuição a posteriori. Assim, usando a distribuição a posteriori dos parâmetros e a distribuição de probabilidades das cheias, condicionada aos parâmetros, é possível determinar uma distribuição de probabilidades marginal para as cheias, independente das estimativas dos parâmetros. Essa dissertação busca avaliar o ganho, em termos de redução de incertezas, do uso da abordagem bayesiana e das cheias históricas na análise de freqüência de vazões máximas anuais. Para
isso, um estudo de caso é apresentado, o qual consiste na realização da análise de freqüência de vazões máximas anuais no rio São Francisco em São Francisco, utilizando: (1) os registros sistemáticos de vazão do referido posto fluviométrico, (2) as informações sobre cheias
históricas coletadas na bacia hidrográfica do São Francisco, e (3) a teoria bayesiana, com uma distribuição a priori informativa (tanto do ponto de vista da prescrição do modelo distributivo como das estimativas de seus parâmetros) ou não informativa. |
author2 |
Mauro da Cunha Naghettini |
author_facet |
Mauro da Cunha Naghettini Fernando Alves Lima |
author |
Fernando Alves Lima |
spellingShingle |
Fernando Alves Lima Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco |
author_sort |
Fernando Alves Lima |
title |
Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco |
title_short |
Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco |
title_full |
Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco |
title_fullStr |
Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco |
title_full_unstemmed |
Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco |
title_sort |
análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio são francisco em são francisco |
publisher |
Universidade Federal de Minas Gerais |
publishDate |
2005 |
url |
http://hdl.handle.net/1843/REPA-6MUQ2N |
work_keys_str_mv |
AT fernandoalveslima analisebayesianadefrequenciadevazoesmaximasanuaiscominformacoeshistoricasaplicacaoabaciadoriosaofranciscoemsaofrancisco |
_version_ |
1718842740329938944 |
spelling |
ndltd-IBICT-oai-bibliotecadigital.ufmg.br-MTD2BR-REPA-6MUQ2N2019-01-21T17:49:39Z Análise bayesiana de frequência de vazões máximas anuais com informações históricas: aplicação à bacia do rio São Francisco em São Francisco Fernando Alves Lima Mauro da Cunha Naghettini Luiz Rafael Palmier Eber Jose Andrade Pinto Eduardo Savio Passos Rodrigues Martins The estimation of the exceedance probability of a rare flood is a current problem in engineering. However, rare floods are associated to high return periods which are much longer than the time span covered by systematic streamflow records. The conventional flood frequency analysis, which is based on the usually short systematic streamflow data samples, may yield unrealistic estimates of the risks associated with extreme events. In order to reduce the uncertainties and to produce more reliable parameter and quantile estimates, every piece of available information should be used. Beyond systematic streamflow data, information on historical floods and paleofloods may be found and incorporated into the flood frequency analysis. Such pieces of information may augment the sample size, thus reducing the range of extrapolation and yielding more reliable inferences in the domain of extreme floods. Bayesian theory is also an important statistical tool for flood frequency analysis. According to the Bayesian approach, the distribution parameters are treated as random variables, being modeled by a prior probability distribution, which may be formulated on the basis, for instance, of a subjective prior knowledge, as provided by a specialized professional, or additional information from regional analysis. By using Bayes theorem, this prior distribution, which may be informative or not, is then updated by the local streamflow data, thus producing the posterior distribution of the parameters. Hence, by using this posterior distribution along with the flood probability distribution, conditioned to the parameters, it is possible to find a marginal probability function to floods, independently of parameter estimates. The present MSc thesis aims to evaluate the gain, in terms of uncertainty reduction, from using the Bayesian approach, along with information on historical floods, into the frequency analysis of annual flood maxima. In order to perform it, a case study for the São Francisco river basin, at the location of São Francisco, is presented according to the following scenarios: (1) only the systematic flood records are used; (2) information on historical floods are incorporated; and (3) Bayesian theory is employed, with and without an informative prior distribution on parameters and on the probabilistic model. A determinação da probabilidade de que uma certa vazão seja igualada ou excedida em um ao qualquer, objeto da análise de freqüência de cheias, constitui um problema corrente na engenharia. No entanto, essa vazão de interesse está freqüentemente associada a um período de retorno substancialmente mais longo que o dos registros fluviométricos regulares. A análise de freqüência tradicional de vazões de enchentes, baseada exclusivamente nas amostras usualmente curtas de dados sistemáticos, pode conduzir a estimativas pouco realistas da probabilidade de excedência de eventos extremos. Para reduzir as incertezas envolvidas e aumentar o nível de confiança nas estimativas dos parâmetros e quantis, deve-se utilizar toda a informação disponível. Além dos dados sistemáticos, informações sobre cheias históricas e paleohidrológicas (paleovazões) podem ser encontradas e incorporadas à análise de freqüência. Essas informações permitem aumentar substancialmente o tamanho da amostra, reduzindo o grau de extrapolação e tornando menos incertas as inferências feitas no domínio das cheias extremas. A teoria bayesiana também constitui uma ferramenta estatística importante para a análise de freqüência de cheias. Na abordagem bayesiana, os parâmetros do modelo probabilístico são tratados como variáveis aleatórias, modeladas por uma distribuição de probabilidades a priori, formulada, por exemplo, à luz de algum conhecimento subjetivo acumulado por especialistas ou de informações provenientes de análise regional. Utilizando o teorema de Bayes, essa distribuição a priori, que pode ser informativa ou não, é então atualizada pelos dados fluviométricos locais, resultando na distribuição a posteriori. Assim, usando a distribuição a posteriori dos parâmetros e a distribuição de probabilidades das cheias, condicionada aos parâmetros, é possível determinar uma distribuição de probabilidades marginal para as cheias, independente das estimativas dos parâmetros. Essa dissertação busca avaliar o ganho, em termos de redução de incertezas, do uso da abordagem bayesiana e das cheias históricas na análise de freqüência de vazões máximas anuais. Para isso, um estudo de caso é apresentado, o qual consiste na realização da análise de freqüência de vazões máximas anuais no rio São Francisco em São Francisco, utilizando: (1) os registros sistemáticos de vazão do referido posto fluviométrico, (2) as informações sobre cheias históricas coletadas na bacia hidrográfica do São Francisco, e (3) a teoria bayesiana, com uma distribuição a priori informativa (tanto do ponto de vista da prescrição do modelo distributivo como das estimativas de seus parâmetros) ou não informativa. 2005-08-08 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://hdl.handle.net/1843/REPA-6MUQ2N por info:eu-repo/semantics/openAccess text/html Universidade Federal de Minas Gerais 32001010014P1 - SANEAMENTO MEIO AMBIENTE E RECURSOS HÍDRICOS UFMG BR reponame:Biblioteca Digital de Teses e Dissertações da UFMG instname:Universidade Federal de Minas Gerais instacron:UFMG |