Summary: | === Let F be a foliation de ned by a holomorphic vector eld X on a neighborhood of 0 2 C2 and let G be a group of holomorphic germs of di eomorphisms at 0. We address to the question on whether G is conjugated to the projective holonomy group associated to F. Our aim in this work is to study Lins Neto's article [2] that provides a partial solution to this problem.
Teorema. Let G = fg1; :::; gg be a group of germs at 0 2 C of holomorphic di eomorphisms with leave 0 xed and such that g1; :::; g and g1 g are linearizable. Then there is a germ holomorphic vector eld X, with a singularity at 0 2 C2, such that its projective holonomy group conjugated to the group holomorphically generated by G. === Dados G um subgrupo do grupo de difeomorsmos holomorfos e F uma folheação gerada por um campo de vetores holomorfo X definido em 0 2 C2, quando o grupo G é conjugado ao grupo de holonomia projetivo associado a F ?. O objetivo deste trabalho é o estudo do artigo de Alcides Lins Neto [2] que dá uma solução parcial para esse problema:
Teorema. Seja G = fg1; :::; gg um conjunto de germes em 0 2 C de difeomorfismos holomorfos com ponto xo em 0 e tais que g1; :::; g e g1 g são linearizáveis. Então existe um germe de campo de vetores holomorfo X, singular em 0 2 C2, tal que o grupo de holonomia projetivo é analiticamente conjugado ao grupo gerado por G..
|