Pontos periódicos quase elípticos em sistemas dinâmicos conservativos

=== Our objective is analize some generic properties of conservative and symplectic dynamical systems. We will focus our atention in two results we consider particularly relevant: Pixton's theorem, which proves the existence of a residual set of diffeomorphisms in R2 for which every hyperbolic...

Full description

Bibliographic Details
Main Author: Andre Ribeiro de Resende Alves
Other Authors: Mario Jorge Dias Carneiro
Format: Others
Language:Portuguese
Published: Universidade Federal de Minas Gerais 2012
Online Access:http://hdl.handle.net/1843/EABA-8YAT47
Description
Summary:=== Our objective is analize some generic properties of conservative and symplectic dynamical systems. We will focus our atention in two results we consider particularly relevant: Pixton's theorem, which proves the existence of a residual set of diffeomorphisms in R2 for which every hyperbolical periodic point has transverse homoclinic intersection; and a theorem by Newhouse, that proves the existence of a subset B Diffr! (M) such that if f 2 B then every quasi-elliptic periodic point of f is the limit of transverse homoclinic points off. === Nesse trabalho vamos analisar algumas propriedades genéricas de sistemas dinâmicos conservativos ou simpléticos. Vamos provar em detalhes dois resultados que consideramos relevantes: o teorema de Pixton, que afirma existe um subconjunto residual do conjunto dos difeos em R2 para o qual todo ponto periódico hiperbólico possui interseção homoclínica transversal; e o teorema de Newhouse que prova a existência de um subconjunto B Diffr! (M) tal que se f 2 B então todo ponto quase elíptico de f é também limite de pontos homoclínicos transversais de f.