Pontos periódicos quase elípticos em sistemas dinâmicos conservativos
=== Our objective is analize some generic properties of conservative and symplectic dynamical systems. We will focus our atention in two results we consider particularly relevant: Pixton's theorem, which proves the existence of a residual set of diffeomorphisms in R2 for which every hyperbolic...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal de Minas Gerais
2012
|
Online Access: | http://hdl.handle.net/1843/EABA-8YAT47 |
Summary: | === Our objective is analize some generic properties of conservative and symplectic dynamical systems. We will focus our atention in two results we consider particularly relevant: Pixton's theorem, which proves the existence of a residual set of diffeomorphisms in R2 for which every hyperbolical periodic point has transverse homoclinic intersection; and a theorem by Newhouse, that proves the existence of a subset B Diffr!
(M) such that if f 2 B then every quasi-elliptic periodic point of f is the limit of transverse homoclinic points off. === Nesse trabalho vamos analisar algumas propriedades genéricas de sistemas dinâmicos conservativos ou simpléticos. Vamos provar em detalhes dois resultados que consideramos relevantes: o teorema de Pixton, que afirma existe um subconjunto residual do conjunto dos difeos em R2 para o qual todo ponto periódico hiperbólico possui
interseção homoclínica transversal; e o teorema de Newhouse que prova a existência de um subconjunto B Diffr! (M) tal que se f 2 B então todo ponto quase elíptico de f é também limite de pontos homoclínicos transversais de f. |
---|