Existência de soluções positivas para o p-Laplaciano com dependência do gradiente

=== The main aim of this work is to prove the existence of positive solutions for Dirichlet problems involving the p-Laplacian operator and nonlinearities that depend on the gradient of the solution. We will consider the problem \Delta _{p}u = \omega (x)f(u, | \nabla u|) in a smooth bounded domain...

Full description

Bibliographic Details
Main Author: Wenderson Marques Ferreira
Other Authors: Hamilton Prado Bueno
Format: Others
Language:Portuguese
Published: Universidade Federal de Minas Gerais 2010
Online Access:http://hdl.handle.net/1843/EABA-854NB6
Description
Summary:=== The main aim of this work is to prove the existence of positive solutions for Dirichlet problems involving the p-Laplacian operator and nonlinearities that depend on the gradient of the solution. We will consider the problem \Delta _{p}u = \omega (x)f(u, | \nabla u|) in a smooth bounded domain of R^{N}, where \omega is a weight function and f(u, | \nabla u|) is a nonlinearity. No asymptotic behavior is assumed on f. Such hypotheses will be replaced by appropriate conditions in a neighborhood of the first p-Laplacian eigenvalue. If \Omega is a radial domain, the existence of positive solutions will be obtained by applying the Schauder. Fixed Point Theorem. In the general case, we will apply the sub- and supersolution method. A subsolution will be obtained from the radial solution in the subdomain B_{} \subset \Omega and a supersolution will be obtained as a multiple of a solution of a linear problem in a domain \Omega_{2} supset \Omega. We will study the choice of the domain 2 and our results will be applied to guarantee the existence of positive solutions for the problem \Delta _{p}u = \lambda u(x) ^{q1}(1 + |\nabla u(x)|^{p}), with Dirichlet boundary condition, in smooth and bounded domain of R^{N}. === O principal objetivo desse trabalho é o estudo da existência de soluções positivas para problemas de Dirichlet envolvendo o operador p-Laplaciano nos quais a não linearidade envolvida depende do gradiente da solução. Consideraremos o problema \Delta _{p}u = \omega (x)f(u, | \nabla u|) em domínios suaves e limitados de R^{N}, sendo \omega uma função peso e f(u, | \nabla u|) uma não linearidade. Não consideraremos nenhum comportamento assintótico em f. Tais hipóteses serão substituídas por condições adequadas em uma vizinhança do primeiro autovalor do p-Laplaciano. No caso de um domínio radial \Omega, a existência de solução positiva para o problema considerado será obtida mediante a aplicação do Teorema do Ponto Fixo de Schauder. Para domínios gerais, aplicaremos o método de sub- e supersolução. A subsolução decorre da solução de um problema radial em um subdomínio B_{} \subset \Omega, e a supersolução é gerada pela solução de um problema linear em um domínio \Omega_{2} supset \Omega. Estudaremos a escolha do domínio \Omega_2 e os resultados obtidos serão aplicados para garantirmos a existência de soluções positivas para o problema de Dirichlet \Delta _{p}u = \lambda u(x) ^{q1}(1 + |\nabla u(x)|^{p}) em domínios suaves e limitados de R^{N}