Summary: | === Gait can be described mechanically by the time series of a set of biomechanical variables, e.g. the time series of the ground reaction forces. These time series can be analyzed by their correlations with orthogonal functions, serving as criteria for comparison of different movements. Quantitative analysis of human gait has been used by physicians and physiotherapists for diagnostics of pathologic gait pattern and identification of gait pattern changes due to therapeutic and orthopedic interventions. In order to classify and distinguish different groups (normal gait versus pathologic gait), non-linear classification methods (Artificial Neural Networks) have been applied and the results compared to linear statistic classificators. Therefore, the objective of this study was to verify the capacity of two classification methods, Artificial Neural Networks and Least Squares Method, to distinguish two different situations, barefoot gait and gait with shoe wear. Twenty-four male and female, individuals, averaging 23.2 years of age, walked on a force platform at the most economic velocity of 1.3 m s'^ and selfdetermined velocity, 40 trials barefoot and 40 times with their own shoe wear. The velocities were monitored by two photo-cells. The three components of the ground reaction force were registered with a frequency of 1 kHz. For each group of trials (barefoot and with shoe ware) the optimal number of orthogonal functions was calculated. The next step was the presentation of the orthogonal functions coefficients as a standard entry for the Artificial Neural Networks and the Least Square Method in order to identify the two distinct situations (barefoot gait and gait with shoe ware). The results showed that both methods obtained very high recognition rate. For the vertical component of the ground reaction force the recognition rate of the validation process was 99.27% for Least Square Method and 99.65% for the Artificial Neural Networks. The recognition rate for the anterior-posterior component was 94.06% for the Least Square Method and 96.06% for the Artificial Neural Networks. For the medium-lateral component the recognition rate was a bit lower, 87,46% for the Least Square Method and 93,62% for the Artificial Neural Networks. Based on these results it can be concluded that it might be possible to apply these methods also for other classification problems of human gait and that the Least Square Method, which is much easier to be applied, provides recognition rate close to the ones from the Artificial Neural Networks. === A caminhada pode ser descrita mecanicamente por um conjunto de informações que são caracterizadas por seu decorrer temporal, por exemplo, a curva de forçatempo. A avaliação das séries temporais pode ser feita por meio da correlação destas com polinômios ortogonais que servem como um critério de comparação entre os movimentos. A análise quantitativa da marcha tem sido utilizada no suporte de decisões de fisioterapeutas e médicos para o diagnóstico de anormalidades e, ou, a identificação de mudanças devido às intervenções terapêuticas ou ortopédicas. Com o objetivo de classificar os indivíduos em grupos (e.g. marcha normal x marcha patológica), métodos de classificação não-lineares (Redes Neurais Artificiais) têm sido aplicados e seus resultados comparados com os classificadores estatísticos lineares. Desta forma, o objetivo do presente estudo foi verificar a possibilidade de reconhecimento de duas situações distintas (marcha descalça versus marcha calçada) por meio de séries temporais das componentes da força de reação do solo utilizando: Redes Neurais Artificiais e um modelo linear com estimador de Mínimos Quadrados. Vinte e quatro indivíduos, de ambos os gêneros, com média de idade de 23,2 anos, caminharam sobre uma plataforma de força, em condições descalça (40 tentativas) e calçada (40 tentativas), na velocidade mais econômica da marcha (próximo de 1,3 m.s^-1) e na velocidade auto-selecionada verificadas por duas fotocélulas. As três componentes da força de reação do solo foram registradas com a freqüência de 1kHz, totalizando 80 tentativas para cada indivíduo. Para cada grupo de tentativas de uma mesma condição (e.g. condição 1 = descalço realizando contato com o pé direito na plataforma de força na velocidade mais econômica da marcha) foi calculado o grau do polinômio ótimo. Após este procedimento os coeficientes provenientes da interpelação das séries temporais com os polinômios foram apresentados como padrão de entrada tanto para as Redes Neurais Artificiais (RNAs) quanto para os Mínimos Quadrados para que fosse realizada a classificação das duas classes (marcha descalço x calçado). Os resultados mostraram que houve elevada taxa de reconhecimento para as duas situações com ambos os métodos. Para a componente vertical o reconhecimento para o conjunto de validação foi de 99,27% utilizando-se o estimador de Mínimos Quadrados e de 99,56% utilizando-se RNAs. Para a componente ântero-posterior a taxa de classificação foi de 94,06% quando se aplicou o estimador de Mínimos Quadrados e 96,06% utilizando RNAs. Para a componente médio-lateral, as taxas foram, respectivamente, de 87,46% e de 93,62%. Baseado nesses resultados pode-se concluir que seria possivel aplicar esses métodos também em outros problemas de classificação da marcha humana e que o Método de Mínimos Quadrados que é muito mais simples de ser aplicado resulta em taxas de reconhecimento semelhantes às Redes Neurais Artificiais.
|