Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares

=== In the last decades, Machine Learning, the research area that aims to study computer algorithms that extract information from data automatically, has grown in importance due to the development of computer capacity and therefore due to the increase of available information. The main challenge of...

Full description

Bibliographic Details
Main Author: Bruno Henrique Barbosa
Other Authors: Luis Antonio Aguirre
Format: Others
Language:Portuguese
Published: Universidade Federal de Minas Gerais 2009
Online Access:http://hdl.handle.net/1843/BUOS-8CDGT6
id ndltd-IBICT-oai-bibliotecadigital.ufmg.br-MTD2BR-BUOS-8CDGT6
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
description === In the last decades, Machine Learning, the research area that aims to study computer algorithms that extract information from data automatically, has grown in importance due to the development of computer capacity and therefore due to the increase of available information. The main challenge of learning algorithms is to improve generalization ability of estimators. In this context, evolutionary algorithms and committee machines (combination of more than one model) may be seen as competitive alternatives to solve this challenge. Thus, the identification of nonlinear systems, increasingly required in advanced control problems, can benefit from these alternatives. From this premise, this work aims at applying such techniques in identification problems. Looking at the problem of identification in an optimization perspective, two entities are of utmost importance: the prediction error and the simulation error. With the use of evolutionary algorithms, multi-objective or not,the role of these entities in the parameters estimation of nonlinear models is discussed. Among the obtained results, it could be emphasized the one that recommends the use of prediction error based criteria in equation error problems and the use of simulation error based criteria in output error problems (or measurement error), the latter being generally more robust. Although it is known that the use of prediction error based criterion in output error problems, without the proper settings (noise model), finds biased estimates, the novelty is that the simulationerror also finds biased estimates when applied to equation error problems. A new bi-objective approach was proposed using simulation error and the model static function error in gray-box identification, showing its effectiveness against the black-box identification and against prediction error approaches on a real problem. PWA hybrid systems, examples of committee machines, were also estimated by these entities (through the application of genetic algorithms) finding that the definition of each submodel partition can be performed by prediction error based criteria regardless the noise model. However, the estimation of the submodels parameters should be undertaken by the proposed algorithmcalled MQEP (extended and weighted least squares estimator) in output error problems to avoid bias. Finally, co-evolutionary algorithms and artificial immune systems were implemented to build committees of neural networks being possible to obtain good results in some benchmark regression problems. It was shown that the use of adiversity measure in the learning process is not advisable and that it is possible to find small committees automatically === Nas últimas décadas, devido ao aumento do poder computacional e do consequente crescimento da quantidade de informação disponível aos pesquisadores, a linha de pesquisa conhecida como Aprendizado de Máquina vem ganhando importância. Essa linha de pesquisa tem por objetivo estudar e desenvolver métodos computacionais para obtenção de sistemas capazes de adquirir conhecimento de forma automática. O desafio principal dos algoritmos de aprendizagem é maximizar a capacidade de generalização de seu aprendiz. Nesse contexto, os algoritmos evolucionários e as máquinas de comitê (combinaçãode mais de uma máquina de aprendizado) apresentam-se como alternativas competitivas para a resolução desse desafio. Assim, o estudo de identificação de sistemas não-lineares, cada vez mais requeridos em problemas de controle avançado, pode se beneficiar dessas alternativas. Partindo dessa premissa, este trabalho tem por objetivo aplicar tais técnicas em problemas de identificação. Olhando o problema de identificação sob uma perspectiva de otimização, duas entidades são da maior importância: o erro de predição e o erro de simulação. Com o uso de algoritmos evolucionários, multi-objetivos ou não, o papel dessas entidades na estimação de parâmetros demodelos não-lineares é discutido no trabalho aqui apresentado. Dentre os resultados obtidos, ressalta-se aquele em que se recomenda o usode critérios baseados no erro de predição em problemas de erro na equação e o uso de critérios baseados no erro de simulação em problemas de erro na saída (ou erro de medição), sendo o último geralmente mais robusto. Embora seja do conhecimento que, em problemas de erro na saída, o uso de critério baseado no erro de predição, sem os devidos ajustes (modelo de ruído), encontra estimativas de parâmetros tendenciosas, a novidade é que o uso de erro de simulação também encontra estimativas tendenciosas quando aplicado em problemas de erro na equação. Uma nova abordagem bi-objetivo foi proposta utilizando erro de simulação e erro no ajuste da função estática do modelo em identificação caixa-cinza, mostrandosua eficiência frente à identificação caixa-preta ou mesmo frente às abordagens com erro de predição em um problema real. Sistemas híbridos do tipo PWA (PieceWise Affine), considerados um exemplo de máquina de comitês, também foram estimados por essas entidades (por meio da aplicação dos algoritmos genéticos) em que foi constatado que a definição das regiões de operação de cada submodelo pode ser realizada baseando-se no erro de predição independente do tipo de ruído adicionado. No entanto, a estimação dos parâmetros desses submodelos deve ser realizada pelo algoritmo proposto chamado MQEP(mínimos quadrados estendido e ponderado) em casos de erro na saída, para evitar estimativas tendenciosas. Por fim, algoritmos co-evolucionários e sistemas imunológicos artificiais foram empregados na construção de comitês de redes neurais artificiais em que foi possível obter bons resultados em uma série de problemas de regressão. Ficou constatado que o uso de uma medida de diversidade durante o aprendizado não é aconselhável e que é possível encontrar comitês de tamanho reduzido de forma automática
author2 Luis Antonio Aguirre
author_facet Luis Antonio Aguirre
Bruno Henrique Barbosa
author Bruno Henrique Barbosa
spellingShingle Bruno Henrique Barbosa
Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares
author_sort Bruno Henrique Barbosa
title Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares
title_short Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares
title_full Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares
title_fullStr Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares
title_full_unstemmed Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares
title_sort computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares
publisher Universidade Federal de Minas Gerais
publishDate 2009
url http://hdl.handle.net/1843/BUOS-8CDGT6
work_keys_str_mv AT brunohenriquebarbosa computacaoevolucionariaemaquinasdecomitenaidentificacaodesistemasnaolineares
_version_ 1718843464968306688
spelling ndltd-IBICT-oai-bibliotecadigital.ufmg.br-MTD2BR-BUOS-8CDGT62019-01-21T17:52:37Z Computação evolucionária e máquinas de comitê na identificaçãode sistemas não-lineares Bruno Henrique Barbosa Luis Antonio Aguirre Antonio de Padua Braga In the last decades, Machine Learning, the research area that aims to study computer algorithms that extract information from data automatically, has grown in importance due to the development of computer capacity and therefore due to the increase of available information. The main challenge of learning algorithms is to improve generalization ability of estimators. In this context, evolutionary algorithms and committee machines (combination of more than one model) may be seen as competitive alternatives to solve this challenge. Thus, the identification of nonlinear systems, increasingly required in advanced control problems, can benefit from these alternatives. From this premise, this work aims at applying such techniques in identification problems. Looking at the problem of identification in an optimization perspective, two entities are of utmost importance: the prediction error and the simulation error. With the use of evolutionary algorithms, multi-objective or not,the role of these entities in the parameters estimation of nonlinear models is discussed. Among the obtained results, it could be emphasized the one that recommends the use of prediction error based criteria in equation error problems and the use of simulation error based criteria in output error problems (or measurement error), the latter being generally more robust. Although it is known that the use of prediction error based criterion in output error problems, without the proper settings (noise model), finds biased estimates, the novelty is that the simulationerror also finds biased estimates when applied to equation error problems. A new bi-objective approach was proposed using simulation error and the model static function error in gray-box identification, showing its effectiveness against the black-box identification and against prediction error approaches on a real problem. PWA hybrid systems, examples of committee machines, were also estimated by these entities (through the application of genetic algorithms) finding that the definition of each submodel partition can be performed by prediction error based criteria regardless the noise model. However, the estimation of the submodels parameters should be undertaken by the proposed algorithmcalled MQEP (extended and weighted least squares estimator) in output error problems to avoid bias. Finally, co-evolutionary algorithms and artificial immune systems were implemented to build committees of neural networks being possible to obtain good results in some benchmark regression problems. It was shown that the use of adiversity measure in the learning process is not advisable and that it is possible to find small committees automatically Nas últimas décadas, devido ao aumento do poder computacional e do consequente crescimento da quantidade de informação disponível aos pesquisadores, a linha de pesquisa conhecida como Aprendizado de Máquina vem ganhando importância. Essa linha de pesquisa tem por objetivo estudar e desenvolver métodos computacionais para obtenção de sistemas capazes de adquirir conhecimento de forma automática. O desafio principal dos algoritmos de aprendizagem é maximizar a capacidade de generalização de seu aprendiz. Nesse contexto, os algoritmos evolucionários e as máquinas de comitê (combinaçãode mais de uma máquina de aprendizado) apresentam-se como alternativas competitivas para a resolução desse desafio. Assim, o estudo de identificação de sistemas não-lineares, cada vez mais requeridos em problemas de controle avançado, pode se beneficiar dessas alternativas. Partindo dessa premissa, este trabalho tem por objetivo aplicar tais técnicas em problemas de identificação. Olhando o problema de identificação sob uma perspectiva de otimização, duas entidades são da maior importância: o erro de predição e o erro de simulação. Com o uso de algoritmos evolucionários, multi-objetivos ou não, o papel dessas entidades na estimação de parâmetros demodelos não-lineares é discutido no trabalho aqui apresentado. Dentre os resultados obtidos, ressalta-se aquele em que se recomenda o usode critérios baseados no erro de predição em problemas de erro na equação e o uso de critérios baseados no erro de simulação em problemas de erro na saída (ou erro de medição), sendo o último geralmente mais robusto. Embora seja do conhecimento que, em problemas de erro na saída, o uso de critério baseado no erro de predição, sem os devidos ajustes (modelo de ruído), encontra estimativas de parâmetros tendenciosas, a novidade é que o uso de erro de simulação também encontra estimativas tendenciosas quando aplicado em problemas de erro na equação. Uma nova abordagem bi-objetivo foi proposta utilizando erro de simulação e erro no ajuste da função estática do modelo em identificação caixa-cinza, mostrandosua eficiência frente à identificação caixa-preta ou mesmo frente às abordagens com erro de predição em um problema real. Sistemas híbridos do tipo PWA (PieceWise Affine), considerados um exemplo de máquina de comitês, também foram estimados por essas entidades (por meio da aplicação dos algoritmos genéticos) em que foi constatado que a definição das regiões de operação de cada submodelo pode ser realizada baseando-se no erro de predição independente do tipo de ruído adicionado. No entanto, a estimação dos parâmetros desses submodelos deve ser realizada pelo algoritmo proposto chamado MQEP(mínimos quadrados estendido e ponderado) em casos de erro na saída, para evitar estimativas tendenciosas. Por fim, algoritmos co-evolucionários e sistemas imunológicos artificiais foram empregados na construção de comitês de redes neurais artificiais em que foi possível obter bons resultados em uma série de problemas de regressão. Ficou constatado que o uso de uma medida de diversidade durante o aprendizado não é aconselhável e que é possível encontrar comitês de tamanho reduzido de forma automática 2009-10-13 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://hdl.handle.net/1843/BUOS-8CDGT6 por info:eu-repo/semantics/openAccess text/html Universidade Federal de Minas Gerais 32001010015P8 - ENGENHARIA ELÉTRICA UFMG BR reponame:Biblioteca Digital de Teses e Dissertações da UFMG instname:Universidade Federal de Minas Gerais instacron:UFMG