Modelagem de evas??o de clientes banc??rios adimplentes: identifica????o de padr??es pelo hist??rico de suas opera????es

Submitted by Kelson Anthony de Menezes (kelson@ucb.br) on 2016-10-28T18:48:01Z No. of bitstreams: 1 JeffersonJoseCeruttiGauerDissertacao2016.pdf: 1448138 bytes, checksum: 7c0985d46840a27fe872a0de79761029 (MD5) === Made available in DSpace on 2016-10-28T18:48:01Z (GMT). No. of bitstreams: 1 Jefferson...

Full description

Bibliographic Details
Main Author: Gauer , Jefferson Jos?? Cerutti
Other Authors: Guadagnin, Renato da Veiga
Format: Others
Language:Portuguese
Published: Universidade Cat??lica de Bras??lia 2016
Subjects:
MSD
Online Access:https://bdtd.ucb.br:8443/jspui/handle/tede/1973
Description
Summary:Submitted by Kelson Anthony de Menezes (kelson@ucb.br) on 2016-10-28T18:48:01Z No. of bitstreams: 1 JeffersonJoseCeruttiGauerDissertacao2016.pdf: 1448138 bytes, checksum: 7c0985d46840a27fe872a0de79761029 (MD5) === Made available in DSpace on 2016-10-28T18:48:01Z (GMT). No. of bitstreams: 1 JeffersonJoseCeruttiGauerDissertacao2016.pdf: 1448138 bytes, checksum: 7c0985d46840a27fe872a0de79761029 (MD5) Previous issue date: 2016-03-10 === Similarities of products and services, market stagnation, the portability of operations among institutions, competition and competitiveness in banking sector have motivated more attention to customer loyalty. It is essential to win new clients as well as to retain them in order to avoid churn. So management tools that concern relations with customers require an increasing amount of variables. Present study covers the best clients in a big-size Brazilian financial institution. It proposes a model for churn predicting, based on the evolution of their loans and investments. Operations from ca. 291 thousands clients were the input data for software QlikView (a user-oriented Business Intelligence platform). The model transformed the Daily Balance Average into a logarithm scale in order to assess the value oscillation according to periods. The achieved index seems to be a possible churn predictor, which indicates that relations management should regard carefully customers susceptible to churn. Nevertheless this index alone does not explain the churn rate. It is recommended to apply it as a complement and a refinement of other indexes that are already deployed in customer loyalty management. === As semelhan??as de produtos e servi??os, a estagna????o do mercado, a portabilidade de opera????es entre institui????es e a concorr??ncia e competitividade no setor banc??rio t??m motivado mais aten????o ?? fideliza????o do cliente. A considera????o de tais fatores ?? essencial para a conquista de novos clientes, bem como para a sua reten????o, a fim de evitar o churn. Assim, ferramentas de gest??o de relacionamento com o cliente exigem uma quantidade crescente de vari??veis. O presente estudo abrange os melhores clientes de uma institui????o financeira brasileira de grande porte. Prop??e um modelo para a predi????o de churn, com base na evolu????o dos seus empr??stimos e investimentos. Opera????es de 291.761 clientes foram os dados de entrada para a ferramenta QlikView (uma plataforma de BI ??? Business Intelligence ??? orientada ao usu??rio). O modelo transformou a M??dia de Saldos Di??rio (MSD) em uma escala logar??tmica, a fim de avaliar a oscila????o de acordo com os per??odos. O indicador alcan??ado parece ser um poss??vel preditor de churn, o que indica que a gest??o de relacionamento deve considerar cuidadosamente os clientes suscet??veis ?? evas??o. No entanto, s?? este indicador n??o explica a taxa de churn. Recomenda-se aplic??-lo como um complemento e um refinamento de outros indicadores que j?? est??o implantados na gest??o da fideliza????o com o cliente.