Summary: | Submitted by repositorio repositorio (repositorio@unifei.edu.br) on 2018-08-02T18:34:21Z
No. of bitstreams: 1
dissertacao_2018102.pdf: 8383033 bytes, checksum: 01f80a6bf47b1b5c2bfbe1e96c714290 (MD5) === Made available in DSpace on 2018-08-02T18:34:21Z (GMT). No. of bitstreams: 1
dissertacao_2018102.pdf: 8383033 bytes, checksum: 01f80a6bf47b1b5c2bfbe1e96c714290 (MD5)
Previous issue date: 2018-07 === No presente trabalho, o objetivo é estudar e quantificar incertezas paramétricas em sistemas estruturais sujeitos às vibrações mecânicas, utilizando a Análise Intervalar e o Método dos Elementos Finitos (MEF). Para isso, apresenta-se uma metodologia, juntamente com a proposição de um novo método para solucionar o Problema do Autovalor Intervalar Generalizado. Desenvolveu-se quatro programas, além de um toolbox com diversas funções, para obter os autovalores, as frequências naturais e os modos de vibração incertos, que são utilizados para solucionar os exemplos numéricos apresentados. Assim, é possível verificar a viabilidade da utilização da análise intervalar e do MEF para a quantificação de incertezas paramétricas em tais sistemas. Quatro métodos de solução são utilizados para validar o método proposto, o Deif’s Solution Theorem (DST), o Eigenvalue Inclusion Principle (EIP), o Parameter Vertex Solution Theorem (PVST) e o método de Monte Carlo, que é amplamente utilizado para validação de novos métodos. Em ordem decrescente, mostra-se que no DST, EIP e PVST os intervalos são superestimados, em comparação com o método de Monte Carlo. Através dos resultados numéricos, fica evidenciado que o método proposto retorna os resultados intervalares com excelente precisão para os problemas, em comparação com Monte Carlo. Sendo assim, demonstra-se, que a forma mais indicada para resolver o problema do autovalor intervalar generalizado, é utilizando o método proposto.
|