Reconhecimento de faces via técnicas de autovetores.

Este trabalho investiga o problema de reconhecimento de faces utilizando Sistemas de Reconhecimento Facial (SRFs) baseados na extração de características via técnicas de autovetores, objetivando propor combinações dessas técnicas, comparar o desempenho em situações de interesse e analisar o comporta...

Full description

Bibliographic Details
Main Author: Valderado Rodrigues Palma
Other Authors: Elder Moreira Hemerly
Format: Others
Language:Portuguese
Published: Instituto Tecnológico de Aeronáutica 1998
Subjects:
Online Access:http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2577
id ndltd-IBICT-oai-agregador.ibict.br.BDTD_ITA-oai-ita.br-2577
record_format oai_dc
spelling ndltd-IBICT-oai-agregador.ibict.br.BDTD_ITA-oai-ita.br-25772019-01-22T03:13:36Z Reconhecimento de faces via técnicas de autovetores. Valderado Rodrigues Palma Elder Moreira Hemerly Reconhecimento de padrões Processamento de imagens Redes neurais Banco de dados Computação Engenharia eletrônica Este trabalho investiga o problema de reconhecimento de faces utilizando Sistemas de Reconhecimento Facial (SRFs) baseados na extração de características via técnicas de autovetores, objetivando propor combinações dessas técnicas, comparar o desempenho em situações de interesse e analisar o comportamento de redes neurais como classificador. Para extração de características são utilizadas as técnicas Linear Discrimiant Analysis (LDA) e Principal Component Analysis (PCA). Inicialmente, de modo a explicar o problema de reconhecimento de faces, é apresentada uma breve revisão sobra a literatura relativa ao tema, destacando-se os trabalhos Goudail et alii (1996) e Neto (1997) que são fundamentais para as propostas desenvolvidas na presente dissertação. Na seqüência, de modo a analisar detalhadamente as técnicas utilizadas nestes trabalhos, os sistemas de reconhecimento facial são divididos em três etapas, a saber, descrição da face, extração de características e classificação. A seguir, é formado o banco de dados ITA, contendo 400 imagens faciais de pessoas da Divisão de Engenharia Eletrônica do Instituto Tecnológico de Aeronáutica (ITA), e o sistema de aquisição de imagens utilizado na sua construção são apresentados. Este banco de dados ORL (Samaria, 1994) são utilizados nas avaliações de desempenho com o objetivo de testar os métodos e o comportamento destes a variações nas disposições das faces presentes em cada base de dados. Na seqüência, o SRF baseado em LDA (SRF-LDA) é implementado. Os resultados da avaliação dos bancos de dados mostram um desempenho satisfatório. Com o objetivo de comparação, o mesmo procedimento é realizado para o SRF baseado em PCA (SRF-PCA), concluindo-se que melhor desempenho é obtido no SRF-LDA. Em seguida propõe-se um SRF que utiliza uma combinação das técnicas LDA e PCA (SRF+PCA+LDA). Esta combinação utiliza extração de características com descrição da face através de vetores de intensidade de pixel, realiza um mapeamento que otimiza a relação de distâncias interclasse e intraclasse, diminui o número de coeficientes necessários para se representar uma face e melhora o desempenho de processo de reconhecimento. Finalmente, uma vez que rede neural é classicamente utilizada como classificador, propõe-se sua utilização tanto no SRF-PCA, quanto para o SRF-PCA+LDA. O classificador baseado em redes neurais melhora o desempenho do reconhecimento em ambos os casos. 1998-00-00 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2577 por info:eu-repo/semantics/openAccess application/pdf Instituto Tecnológico de Aeronáutica reponame:Biblioteca Digital de Teses e Dissertações do ITA instname:Instituto Tecnológico de Aeronáutica instacron:ITA
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Reconhecimento de padrões
Processamento de imagens
Redes neurais
Banco de dados
Computação
Engenharia eletrônica
spellingShingle Reconhecimento de padrões
Processamento de imagens
Redes neurais
Banco de dados
Computação
Engenharia eletrônica
Valderado Rodrigues Palma
Reconhecimento de faces via técnicas de autovetores.
description Este trabalho investiga o problema de reconhecimento de faces utilizando Sistemas de Reconhecimento Facial (SRFs) baseados na extração de características via técnicas de autovetores, objetivando propor combinações dessas técnicas, comparar o desempenho em situações de interesse e analisar o comportamento de redes neurais como classificador. Para extração de características são utilizadas as técnicas Linear Discrimiant Analysis (LDA) e Principal Component Analysis (PCA). Inicialmente, de modo a explicar o problema de reconhecimento de faces, é apresentada uma breve revisão sobra a literatura relativa ao tema, destacando-se os trabalhos Goudail et alii (1996) e Neto (1997) que são fundamentais para as propostas desenvolvidas na presente dissertação. Na seqüência, de modo a analisar detalhadamente as técnicas utilizadas nestes trabalhos, os sistemas de reconhecimento facial são divididos em três etapas, a saber, descrição da face, extração de características e classificação. A seguir, é formado o banco de dados ITA, contendo 400 imagens faciais de pessoas da Divisão de Engenharia Eletrônica do Instituto Tecnológico de Aeronáutica (ITA), e o sistema de aquisição de imagens utilizado na sua construção são apresentados. Este banco de dados ORL (Samaria, 1994) são utilizados nas avaliações de desempenho com o objetivo de testar os métodos e o comportamento destes a variações nas disposições das faces presentes em cada base de dados. Na seqüência, o SRF baseado em LDA (SRF-LDA) é implementado. Os resultados da avaliação dos bancos de dados mostram um desempenho satisfatório. Com o objetivo de comparação, o mesmo procedimento é realizado para o SRF baseado em PCA (SRF-PCA), concluindo-se que melhor desempenho é obtido no SRF-LDA. Em seguida propõe-se um SRF que utiliza uma combinação das técnicas LDA e PCA (SRF+PCA+LDA). Esta combinação utiliza extração de características com descrição da face através de vetores de intensidade de pixel, realiza um mapeamento que otimiza a relação de distâncias interclasse e intraclasse, diminui o número de coeficientes necessários para se representar uma face e melhora o desempenho de processo de reconhecimento. Finalmente, uma vez que rede neural é classicamente utilizada como classificador, propõe-se sua utilização tanto no SRF-PCA, quanto para o SRF-PCA+LDA. O classificador baseado em redes neurais melhora o desempenho do reconhecimento em ambos os casos.
author2 Elder Moreira Hemerly
author_facet Elder Moreira Hemerly
Valderado Rodrigues Palma
author Valderado Rodrigues Palma
author_sort Valderado Rodrigues Palma
title Reconhecimento de faces via técnicas de autovetores.
title_short Reconhecimento de faces via técnicas de autovetores.
title_full Reconhecimento de faces via técnicas de autovetores.
title_fullStr Reconhecimento de faces via técnicas de autovetores.
title_full_unstemmed Reconhecimento de faces via técnicas de autovetores.
title_sort reconhecimento de faces via técnicas de autovetores.
publisher Instituto Tecnológico de Aeronáutica
publishDate 1998
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2577
work_keys_str_mv AT valderadorodriguespalma reconhecimentodefacesviatecnicasdeautovetores
_version_ 1718961453865631744