Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta

?rea de concentra??o: Silvicultura e Manejo Florestal. === Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2016-12-15T17:35:57Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) kaio_cesar_mendes_da_silva_nery.pdf: 1845996 bytes, checksum...

Full description

Bibliographic Details
Main Author: Nery, Kaio Cesar Mendes da Silva
Other Authors: Oliveira, Marcio Leles Romarco de
Language:Portuguese
Published: UFVJM 2016
Subjects:
Online Access:http://acervo.ufvjm.edu.br/jspui/handle/1/1067
id ndltd-IBICT-oai-acervo.ufvjm.edu.br-jspui-1-1067
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic Redes neurais artificiais
Intelig?ncia artificial
Invent?rio florestal
Artificial neural networks
Prognosis
Forest inventory
spellingShingle Redes neurais artificiais
Intelig?ncia artificial
Invent?rio florestal
Artificial neural networks
Prognosis
Forest inventory
Nery, Kaio Cesar Mendes da Silva
Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta
description ?rea de concentra??o: Silvicultura e Manejo Florestal. === Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2016-12-15T17:35:57Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) kaio_cesar_mendes_da_silva_nery.pdf: 1845996 bytes, checksum: 5d05a5ba4a2dd512a413bc72377348a4 (MD5) === Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2016-12-16T15:43:43Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) kaio_cesar_mendes_da_silva_nery.pdf: 1845996 bytes, checksum: 5d05a5ba4a2dd512a413bc72377348a4 (MD5) === Made available in DSpace on 2016-12-16T15:43:43Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) kaio_cesar_mendes_da_silva_nery.pdf: 1845996 bytes, checksum: 5d05a5ba4a2dd512a413bc72377348a4 (MD5) Previous issue date: 2016 === O objetivo deste estudo foi avaliar o efeito da redu??o de parcelas permanentes no custo da realiza??o do invent?rio florestal cont?nuo e realizar a prognose do volume de floresta comparando o emprego das Redes Neurais Artificiais ao modelo tradicionalmente utilizado proposto por Clutter (1963). Os dados utilizados foram provenientes de povoamentos localizados no litoral norte da Bahia, totalizando cerca de 3.000 hectares de floresta. Foram propostas duas metodologias para auxiliar na redu??o das parcelas. Para a metodologia proposta no estudo 1, os dados foram divididos aleatoriamente em dois grupos: treinamento (10, 20, 30, 40, 50, 60, 70, 80, e 90%) e generaliza??o (90, 80, 70, 60, 50, 40, 30, 20, 10%). Os dados do treinamento foram utilizados para gerar as redes neurais artificias enquanto que os dados da generaliza??o serviram para validar a capacidade das redes em gerar resultados precisos para dados desconhecidos. A metodologia proposta no estudo 2 dividiu aleatoriamente os dados em dois grupos: treinamento a escolha fixa de quantidades de parcelas pr?-estabelecidas nas tr?s classes de s?tio (10, 20, 30, 40, 50 e 60) totalizando 30, 60, 90, 120, 150 e 180 parcelas utilizadas para o treino das redes neurais e os demais dados foram utilizados para validar a capacidade das redes. A estimativa da vari?vel de estudo foi gerada no sistema computacional Neuroforest 3.3. A aplica??o das Redes Neurais Artificiais apresentaram resultados satisfat?rios bem como a aplica??o de ambas metodologias permitiram reduzir consideravelmente o custo para a realiza??o do invent?rio florestal. === Disserta??o (Mestrado) ? Programa de P?s-Gradua??o em Ci?ncia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2016. === This study aimed to evaluate the effects of permanent plots in the cost of carrying out the continuous forest inventory and to perform prognosis of forest production comparing the use of Artificial Neural Networks to the traditional model proposed by Clutter (1963). Data were obtained from municipalities located in the northern region of Bahia state yielding 3,000 hectares of forest. Two different methodologies were proposed to reduce the number of parcels. The methodology proposed for the study 1 involved the random division of the data into two groups consisting of random reducing portions of 10, 20, 30, 40, 50, 60, 70, 80, and 90% with these percentages used for training and the remaining 90, 80, 70, 60, 50, 40, 30, 20, 10% used for validation. The methodology proposed for study 2 consisted of random reduction in parcels with a fixed parcel per site 10, 20, 30, 40, 50 and 60 in each class (30, 60, 90, 120, 150 and 180 parcels). The estimates of the study variables were generated in the computer system Neuroforest 3.3. The applications of Artificial Neural Networks showed satisfactory results and the application of both methodologies have considerably reduced the cost for conducting the forest inventory.
author2 Oliveira, Marcio Leles Romarco de
author_facet Oliveira, Marcio Leles Romarco de
Nery, Kaio Cesar Mendes da Silva
author Nery, Kaio Cesar Mendes da Silva
author_sort Nery, Kaio Cesar Mendes da Silva
title Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta
title_short Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta
title_full Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta
title_fullStr Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta
title_full_unstemmed Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta
title_sort redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta
publisher UFVJM
publishDate 2016
url http://acervo.ufvjm.edu.br/jspui/handle/1/1067
work_keys_str_mv AT nerykaiocesarmendesdasilva reduodonmerodeparcelasparamodelagemdaprognosedovolumedefloresta
AT nerykaiocesarmendesdasilva redcutiontheplotsnumberformodelingtheprognosisofsizeforest
_version_ 1718733743333572608
spelling ndltd-IBICT-oai-acervo.ufvjm.edu.br-jspui-1-10672018-09-16T05:50:29Z Redu??o do n?mero de parcelas para modelagem da prognose do volume de floresta Redcution the plots number for modeling the prognosis of size forest Nery, Kaio Cesar Mendes da Silva Oliveira, Marcio Leles Romarco de Silva, Mayra Luiza Marques da Cordeiro, Sidney Ara?jo Silva, Mayra Luiza Marques da Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) Cordeiro, Sidney Ara?jo Redes neurais artificiais Intelig?ncia artificial Invent?rio florestal Artificial neural networks Prognosis Forest inventory ?rea de concentra??o: Silvicultura e Manejo Florestal. Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2016-12-15T17:35:57Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) kaio_cesar_mendes_da_silva_nery.pdf: 1845996 bytes, checksum: 5d05a5ba4a2dd512a413bc72377348a4 (MD5) Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2016-12-16T15:43:43Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) kaio_cesar_mendes_da_silva_nery.pdf: 1845996 bytes, checksum: 5d05a5ba4a2dd512a413bc72377348a4 (MD5) Made available in DSpace on 2016-12-16T15:43:43Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) kaio_cesar_mendes_da_silva_nery.pdf: 1845996 bytes, checksum: 5d05a5ba4a2dd512a413bc72377348a4 (MD5) Previous issue date: 2016 O objetivo deste estudo foi avaliar o efeito da redu??o de parcelas permanentes no custo da realiza??o do invent?rio florestal cont?nuo e realizar a prognose do volume de floresta comparando o emprego das Redes Neurais Artificiais ao modelo tradicionalmente utilizado proposto por Clutter (1963). Os dados utilizados foram provenientes de povoamentos localizados no litoral norte da Bahia, totalizando cerca de 3.000 hectares de floresta. Foram propostas duas metodologias para auxiliar na redu??o das parcelas. Para a metodologia proposta no estudo 1, os dados foram divididos aleatoriamente em dois grupos: treinamento (10, 20, 30, 40, 50, 60, 70, 80, e 90%) e generaliza??o (90, 80, 70, 60, 50, 40, 30, 20, 10%). Os dados do treinamento foram utilizados para gerar as redes neurais artificias enquanto que os dados da generaliza??o serviram para validar a capacidade das redes em gerar resultados precisos para dados desconhecidos. A metodologia proposta no estudo 2 dividiu aleatoriamente os dados em dois grupos: treinamento a escolha fixa de quantidades de parcelas pr?-estabelecidas nas tr?s classes de s?tio (10, 20, 30, 40, 50 e 60) totalizando 30, 60, 90, 120, 150 e 180 parcelas utilizadas para o treino das redes neurais e os demais dados foram utilizados para validar a capacidade das redes. A estimativa da vari?vel de estudo foi gerada no sistema computacional Neuroforest 3.3. A aplica??o das Redes Neurais Artificiais apresentaram resultados satisfat?rios bem como a aplica??o de ambas metodologias permitiram reduzir consideravelmente o custo para a realiza??o do invent?rio florestal. Disserta??o (Mestrado) ? Programa de P?s-Gradua??o em Ci?ncia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2016. This study aimed to evaluate the effects of permanent plots in the cost of carrying out the continuous forest inventory and to perform prognosis of forest production comparing the use of Artificial Neural Networks to the traditional model proposed by Clutter (1963). Data were obtained from municipalities located in the northern region of Bahia state yielding 3,000 hectares of forest. Two different methodologies were proposed to reduce the number of parcels. The methodology proposed for the study 1 involved the random division of the data into two groups consisting of random reducing portions of 10, 20, 30, 40, 50, 60, 70, 80, and 90% with these percentages used for training and the remaining 90, 80, 70, 60, 50, 40, 30, 20, 10% used for validation. The methodology proposed for study 2 consisted of random reduction in parcels with a fixed parcel per site 10, 20, 30, 40, 50 and 60 in each class (30, 60, 90, 120, 150 and 180 parcels). The estimates of the study variables were generated in the computer system Neuroforest 3.3. The applications of Artificial Neural Networks showed satisfactory results and the application of both methodologies have considerably reduced the cost for conducting the forest inventory. 2016-12-16T15:43:43Z 2016-12-16T15:43:43Z 2016 2016-03-11 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis NERY, Kaio Cesar Mendes da Silva. Redu??o do n?mero de parcelas para modelagem da prognose do volume de florestas. 2016. 41 p. Disserta??o (Mestrado) ? Programa de P?s-Gradua??o em Ci?ncia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2016. http://acervo.ufvjm.edu.br/jspui/handle/1/1067 por A concess?o da licen?a deste item refere-se ao ? termo de autoriza??o impresso assinado pelo autor, assim como na licen?a Creative Commons, com as seguintes condi??es: Na qualidade de titular dos direitos de autor da publica??o, autorizo a Universidade Federal dos Vales do Jequitinhonha e Mucuri e o IBICT a disponibilizar por meio de seus reposit?rios, sem ressarcimento dos direitos autorais, de acordo com a Lei n? 9610/98, o texto integral da obra disponibilizada, conforme permiss?es assinaladas, para fins de leitura, impress?o e/ou download, a t?tulo de divulga??o da produ??o cient?fica brasileira, e preserva??o, a partir desta data. info:eu-repo/semantics/openAccess UFVJM reponame:Repositório Institucional da UFVJM instname:Universidade Federal dos Vales do Jequitinhonha e Mucuri instacron:UFVJM